Основы теории и технологии контактной точечной сварки

Основы теории и технологии контактной точечной сварки. Процессы, протекающие при контактной точечной сварке: деформирования свариваемых деталей; формирования механических и электрических контактов, электрической проводимости зоны сварки; нагрева металла.

Рубрика Производство и технологии
Вид учебное пособие
Язык русский
Дата добавления 21.03.2008
Размер файла 8,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

(1.9)

Ток шунтирования. Зона проводимости тока шунтирования представляет собой электрическую цепь с сопротивлением rШ, параллельную электрической цепи зоны сварки с сопротивлением rЭЭ. Вследствие этого силу тока шунтирования можно вычислить по формуле [3]:

, (1.10)

где -- электрическое сопротивление шунтирующей ветви; ? -- удельное электрическое сопротивление металла свариваемых деталей;
kЭ -- коэффициент ();
s -- толщина детали; bПР -- ширина шунта, приведенная с учётом растекания тока и равная ; dП и dШ -- диаметры уплотняющего пояска и шунтирующего контакта соответственно.

Сварочный ток. От силы сварочного тока размеры ядра расплавленного металла зависят в наибольшей степени (рис. 1.9, б). С увеличением IСВ проплавление деталей А и диаметр ядра dЯ растут почти прямо пропорционально изменению IСВ.

Силу сварочного тока IСВ, по той же причине, что и tСВ, пока определяют только ориентировочно по технологическим рекомендациям или по эмпирическим зависимостям [2…4, 7…11, 13, 15…17]. В отличие от tСВ, для определения которого расчетные методики вообще отсутствуют, для определения IСВ в теории КТС предложено много самых разнообразных зависимостей, к сожалению, не отличающихся высокой точностью и универсальностью, например, зависимостей следующего вида [73...76]:

; ;

; ,

где s -- толщина деталей; dЭ -- диаметр рабочей поверхности электрода;
ki - опытный коэффициент; ? -- температура плавления (с учетом скрытой теплоты плавления); ? и ? -- удельное электрическое сопротивление и коэффициент теплопроводности; dТ -- диаметр ядра (см); ?Т -- удельное электрическое сопротивление металла в момент его плавления (мкОм/см).

В практике традиционных способов КТС для сварочного импульса, длительностью tСВ, усредненную силу сварочного тока IСВ чаще всего приближенно рассчитывают по следующей зависимости, которая получена из общеизвестного закона Джоуля - Ленца [8…11, 16]:

, [3] (1.11)

где QЭЭ -- количество теплоты, выделяющееся в зоне сварки, которое требуется для образования сварного соединения заданных размеров (величина QЭЭ определяется по уравнению теплового баланса (см. ниже п. 2.4.3));
mr -- коэффициент, который учитывает изменение сопротивления зоны сварки rЭЭ в процессе формирования соединения (для низкоуглеродистых сталей он равен , для алюминиевых и магниевых сплавов -- , для коррозионно-стойких сталей -- , для сплавов титана -- ; rДК -- электрическое сопротивление деталей в конце сварки (определение rДК см. ниже п. 2.3.3).

1.3.3. Усилие сжатия электродов

Усилие сжатия электродов (сварочное усилие) FСВ -- один из важнейших параметров режима КТС, который оказывает влияние на все основные процессы, ответственные за формирование соединения, в частности, на микро- и макропластические деформации, на выделение и перераспределение теплоты, на охлаждение металла в зоне сварки и кристаллизацию его в ядре.

С увеличением FСВ увеличиваются пластические деформации металла в зоне сварки и площади контактов, уменьшается плотность тока в них, уменьшается электрическое сопротивление участка электрод-электрод и стабилизируется его величина. Поэтому при постоянстве остальных параметров режима увеличение FСВ вызывает уменьшение размеров ядра
(рис. 1.9, в), прочности сварных точек при одновременном понижении и их стабильности. Если же увеличение FСВ сопровождается таким увеличением IСВ или tСВ, что размеры ядра остаются неизменными, то с ростом величины сварочного усилия прочность точек возрастает и становится более стабильной. [10, 77…79]

Как и сварочный ток, сварочное усилие определяют в основном по эмпирическим зависимостям, предложенным для приближенного расчета или пересчета сварочного усилия и основанным на подобии процессов КТС. Методики пересчета FСВ исходят из подобия процессов формирования соединений при сварке деталей из одних и тех же металлов разных толщин. Все они, к сожалению, также не отличаются ни высокой точностью, ни универсальностью. В частности, для пересчетов и расчетов FСВ предложены следующие зависимости [10, 15, 73, 80...82]:

; ;

; ; ;

; ,

где F0 -- удельное сварочное усилие; dЯ -- диаметр ядра расплавленного металла с известным FСВ; dЯ -- диаметр ядра, для которого рассчитывают FСВ; P0 -- удельное давление, определяемое экспериментально; dЭ -- диаметр рабочей поверхности электрода; s -- толщина деталей; k1 и k2 --коэффициенты, учитывающие сопротивление деформации металла и конструктивную жесткость изделия; ?02 -- условный предел текучести свариваемого металла при нормальной температуре; -- предел текучести свариваемого металла при температуре 300о С;

1.3.4. Форма и размеры рабочих поверхностей электродов

Форма и размеры рабочих поверхностей электродов (рис. 1.3: dЭ -- при плоской и RЭ -- при сферической), контактирующие со свариваемыми деталями, существенно влияют на качество получаемых сварных соединений. Увеличение площади контакта электрод-деталь, например, из-за износа рабочей поверхности электродов приводят к уменьшению плотности тока и давления в зоне сварки, а, следовательно, к уменьшению размеров ядра и снижению качества готовых точечных соединений (рис. 1.9, г).

Применяемая форма электродов зависит от свойств материала свариваемых деталей. Так, например, для сварки титановых, алюминиевых и магниевых сплавов, как правило, применяют электроды со сферическими рабочими поверхностями. Стали же, в основном сваривают электродами с плоской рабочей поверхностью.

Размеры рабочих поверхностей электродов в большинстве случаев выбирают исходя из толщины свариваемых деталей.

Радиус сферы электрода RЭ определяют, ориентируясь на конечный диаметр отпечатка и допустимую глубину вмятины, которая не должна превышать 10 % от толщины детали [83]. Исходя из этого условия предложены следующие зависимости для определения минимального RЭMIN и максимального RЭMAX радиусов рабочих поверхностей электродов в зависимости от толщины s свариваемых деталей [84]:

.

Диаметры плоских рабочих поверхностей электродов выбирают с учетом диаметров ядра, которые в свою очередь задают по толщине деталей. Значения dЭ определяют по следующим зависимостям [85, 86]:

, .

Однако в практике КТС размеры рабочих поверхностей электродов обычно не рассчитывают. Значения dЭ и RЭ, как правило, выбирают по технологическим рекомендациям (табл. 1.2), в которых они близки к значениям, рассчитанным по приведенным выше зависимостям. Окончательные значения tСВ, IСВ, FСВ и RЭ или dЭ определяют и корректируют на образцах технологической пробы [3, 15].

Поскольку приемлемые по точности для практики КТС методики оптимизации режимов сварки (сочетаний IСВ, tСВ и FСВ) пока не разработаны параметры одного из них, как правило, время сварки tСВ, определяют ориентировочно по технологическим рекомендациям, основанным на экспериментальных исследованиях процессов КТС и опыте их практического использования в промышленности. После этого для принятого значения tСВ по приближенным методикам, определяют силу IСВ и усилие сжатия электродов FСВ [2…4, 7…11, 13, 15…17].

Таким образом, существующие расчетные методики определения основных параметров режима весьма не совершенны. У них можно отметить общий недостаток -- они не отражают физической сущности процессов, протекающих при КТС, не являются универсальными и применимы только для тех ограниченных областей толщин и металлов, на основании результатов исследований которых они и получены. Они не могут использоваться для решения задач, связанных с программированным изменением термодеформационных процессов, протекающих при формировании точечных сварных соединений.

1.3.5. Критерии подобия для определения режимов сварки

Выше, в п. 1.2.1 отмечалось, что, несмотря на изменение значимости влияния на отдельных этапах формирования соединения каждого из основных термодеформационных процессов, протекающих в зоне сварки, на процесс сварки общая схема формирования соединения происходит по единой схеме. При этом исследователями процесса КТС давно было подмечено, что при сварке деталей разных толщин параметры основных термодеформационных процессов изменяются по одинаковым закономерностям, то есть подобно. На основании результатов экспериментальных исследований рядом исследователей были разработаны основы теории подобия процессов КТС и предложен ряд критериев -- безразмерных величин, математически описывающих это подобие [3, 4, 13, 16, 74…76, 87, 88].

Физические процессы подобны, если они описываются одним и тем же дифференциальным уравнением и имеют подобные начальные и граничные условия. Подобие выражается в том, что при определенных условиях в сходственных точках тел, т. е. в точках с одной и той же относительной координатой, например, в точках, расположенных в середине или на краю листа, достигаются одни и те же значения переменных параметров, в частности температуры или деформации.

По этим критериям, определяемым по моделям, рассчитывают масштабные коэффициенты для определения параметров процесса. Процессы точечной свирки деталей разной толщины могут быть подобны при равенстве критериев подобия, например, следующих [16]:

- критерий геометрического подобия

; (1.12)

- критерий гомохронности (подобия по времени -- критерий Фурье)

; (1.13)

- критерий подобия тепловыделения

; (1.14)

- критерий подобия пластических деформаций

, (1.15)

где s -- толщина деталей; dЯ -- диаметр ядра; IД и tСВ -- действующее значение сварочного тока и время его протекания; FСВ -- сварочное усилие; сm, ?, ТПЛ, и ?Д -- соответственно, массовая теплоёмкость, плотность, температура плавления и сопротивление деформации свариваемого металла.

Применение теории подобия позволяет по одному экспериментально определенному режиму с использованием критериев подобия рассчитать параметры режима сварки деталей других толщин. Значения критериев определяют по единичным опытам [3, 4, 15].

Однако часто расчеты по зависимостям (1.12…1.15) приводят к значительным погрешностям. Обусловлено это прежде всего тем, что в практике сварки не соблюдается критерий геометрического подобия
(см. табл. 1.1). Поэтому для приближенной оценки параметров режима в относительно малом диапазоне толщин (1…4 мм) пользуются рядом других, в основном эмпирических, соотношений, аналогичных по структуре указанным выше, например, [15].

Таким образом, различие способов точечной сварки определяется внешним силовым энергетическим и силовым воздействием на зону формирования соединения. Это воздействие влияет на параметры термодеформационных процессов, протекающих в зоне сварки, которые рассмотрены ниже, и определяющих качество получаемых соединений.

2. основные Процессы, протекающие при
контактной точе
чной сварке

Сварная точка является результатом сложных термодеформационных процессов, протекающих в зоне формирования соединения в течение цикла сварки. Некоторые из этих процессов протекают последовательно, а некоторые и параллельно. Параметры последних зависят не только от внешнего энергетического и силового воздействия на металла в зоне сварки, но и от сложного их взаимного влияния. Ниже рассмотрены закономерности протекания термодеформационных процессов, оказывающих наиболее значимое влияние на конечный результат сварки.

2.1. Сближение свариваемых деталей

Технологической операцией, которая первой выполняется в любом цикле КТС, является сближение свариваемых поверхностей до соприкосновения, поскольку собранные для сварки детали практически никогда плотно не прилегают между собой. Обусловлено это тем, что между свариваемыми деталями всегда имеются зазоры. Они являются следствием либо искривления деталей при выполнении технологических операций, которые предшествуют сварке, либо дефектов сборки деталей перед сваркой, или деформаций деталей непосредственно в процессе сварки предшествующих точек [3, 10, 11, 14…16].

В сближении свариваемых деталей до соприкосновения следует выделить два фактора, которые оказывают значимое влияние как на формирование начальных контактов, так и на процесс сварки в целом: геометрический фактор, который проявляется в искривлении деталей при их деформировании в процессе сближения, и силовой фактор, следствием влияния которого является отклонение усилия сжатия в контакте деталь-деталь от усилия сжатия электродов [14…16, 89… 91].

2.1.1. Деформирование свариваемых деталей при их сближении

Реальная деформация свариваемых деталей в процессе их сближения (рис. 2.1) представляет сложное сочетание признаков, близких как к чистому изгибу пластины (рис. 2.1, а), так и к чистому ее прогибу по типу мембраны (рис. 2.1, д). При этом переход от первого ее состояния ко второму происходит плавно (рис. 2.1, б...г) по мере увеличения расстояния u от кромки нахлестки до центра электродов. Причем этот переход происходит тем быстрее (при меньшей величине u), чем меньше расстояние tШ до точек опоры вдоль нахлестки.

Наличие зазоров между деталями и операции их сближения до соприкосновения, которое приводит к сложному искривлению деталей, существенно изменяет как распределение напряжений в контактах, так и характер, протекающих в них микро- и макродеформаций. При отсутствии зазора (рис. 1.5, этап 1) можно допустить, что в контакте деталь-деталь деформируются две плоские поверхности, а при большом расстоянии от кромки листов до электродов (рис. 2.1, д) -- две сферические поверхности. В практике же сварки в основном встречаются промежуточные более сложные, несимметричные виды деформирования свариваемых деталей при их сближении (рис. 2.1, б...в) [91].

Сложное искривление деталей при их сближении приводит как к уменьшению размеров ядра, так и к искажению его формы (рис. 2.2). Основной причиной этого является изменение формы контакта (рис. 2.3).

Исследования влияния величины зазора ?, шага между точками t=2 tШ, расстояния от кромки нахлестки u и FСВ на величину и форму начального контакта выявили сложную их зависимость от перечисленных выше факторов. При этом измерение контурной площади контакта производили по известной методике угольных плёнок [92…94].

Форма контакта оценивалась коэффициентом формы kФ, который характеризует отклонение формы контакта от окружности, т. е. эллипсоидность контакта. В этом случае реальный контакт принимается в форме эллипса, в котором взаимно перпендикулярные наибольшее и наименьшие значения диаметров контакта принимаются равными наибольшей и наименьшей 2b оси эллипса (рис. 2.3). Эти оси сравниваются с диаметром d0 условной окружности, площадь которой равна площади эллипса. В этом случае коэффициент формы контакта определяется по зависимости

. (2.1)

Очевидно, что коэффициент формы контакта показывает относительное отклонение формы контакта от окружности. Во всех случаях прогиба деталей при наличии зазора между ними контакт вытягивается вдоль оси, перпендикулярной линии края нахлестки (рис. 2.4).

Увеличение расстояния от края листа u при постоянстве остальных параметров приводит к уменьшению контурной площади сварочного контакта SК относительно ее величины при отсутствии зазора S0 (SК/S0) и уменьшению коэффициента её формы kФ, т. е. его эллипсоидности
(рис. 2.4, а). Это объясняется плавным переходом вида деформации детали

от изгиба к прогибу по типу мембраны.

Увеличение расстояния между точками t приводит к увеличению контурной площади контакта и увеличению искажения его формы (рис. 2.4, б). Причем увеличение kФ происходит до некоторого значения t, зависящего от величины зазора ?, а затем с увеличением t эллипсоидность контакта kФ уменьшается. Это также объясняется изменением вида деформации деталей в контакте. Так, увеличение SК при уменьшении u и увеличении t можно объяснить увеличением усилия сжатия F в площади контакта, так как усилие, которое затрачивается на деформацию деталей при их сближении при таком изменении t и u уменьшается. Уменьшение же kФ при увеличении u объясняется переходом от изгиба детали в месте сжатия к ее прогибу по типу мембраны. Начальное увеличение kФ при увеличении t, наоборот, обусловлено переходом от прогиба детали по типу мембраны к ее изгибу, а дальнейшее уменьшение kФ обусловлено уменьшением искривления деталей при увеличении t.

При увеличении зазора ? (рис. 2.4, в) площадь контакта SК вначале уменьшается, что можно объяснить уменьшением усилия в площади контакта, а затем резко увеличивается вплоть до первоначальных размеров. Последнее обусловлено тем, что при достижении зазором некоторой величины ?, которое зависит от конкретного сочетания значений t и u, происходит резкий переход от изгиба детали к её прогибу по типу мембраны. Дальнейшее же увеличение забора приводит к монотонному уменьшению площади контакта, причиной чего является уменьшение усилия сжатия в площади контакта. Эллипсоидность контакта при увеличении зазора вначале увеличивается, а затем монотонно уменьшается. Это объясняется описанным выше изменением вида деформации деталей. Причем, положение точек перегиба (? = 2…2,5 мм, и t = 100…125 мм) на кривых изменения SК/S0 и kФ не является постоянным, а изменяется при изменении сочетаний значений t, ? и F.

Увеличение усилия F сжатия деталей (рис. 2.4, г) во всех случаях приводит к монотонному увеличению площади контакта деталь-деталь, обусловленному увеличением давления в его площади. При этом монотонно уменьшается и искажение формы контакта.

Таким образом, контурная площадь контакта деталь-деталь всегда уменьшается при наличии зазора между ними, а искажение её формы зависит от конкретных сочетаний расстояния между точками и расстояния до кромки нахлёстки, а также значений зазора и усилия сжатия деталей. При величинах зазоров, встречающихся в практике КТС, искажение формы контакта однозначно увеличивается с увеличением расстояния между точками и уменьшением расстояния до кромки нахлёстки.

2.1.2. Влияние деформирования деталей на усилие сжатия
в свариваемом ко
нтакте

Из силовой схемы двусторонней точечной сварки (см. рис.1.1) следует, что усилие сжатия в контактах электрод-деталь и деталь-деталь равны усилию сжатия деталей электродами. Однако это всегда справедливо только для контактов электрод-деталь. Что же касается усилия сжатия в контакте деталь-деталь, то во многих случаях сварки оно отличается от усилия сжатия деталей электродами. И причиной этого являются зазоры, которые приводят к тому, что некоторая часть усилия сжатия электродов (в дальнейшем будем обозначать ее -- FД) затрачивается на деформирование свариваемых деталей при их сближении до соприкосновения. Вследствие этого усилие в площади свариваемого контакта FC меньше усилия сжатия электродов FЭ на величину FД.

Оценка величины отклонения FC от FЭ важна не только для формирования начальных контактов, а для всего процесса формирования соединений при КТС. Так, устойчивость процесса формирования соединений против образования выплесков при традиционных способах сварки связывают, в частности, с наличием зазоров между свариваемыми деталями. При этом основной причиной образования выплесков при наличии зазоров считают значительное уменьшение усилия сжатия деталей в свариваемом контакте, несмотря на то, что величину зазоров при КТС жестко регламентируют (табл. 2.1) [10, 11, 91, 95].

Очевидно, что такие допуски, в особенности при сборке крупногабаритных изделий, например, при сборке обечаек диаметром в несколько метров с перегородками или набором, выдержать весьма проблематично. Такие ограничения, несомненно, удорожают технологию сборки и сварки. При этом, конкретные результаты исследований, которые бы установили степень влияния FД на отклонение FС от FЭ в процессе КТС и тем самым обосновали бы такое объяснение причин повышенной склонности процесса сварки к образованию выплесков и такие жесткие допуски на величину зазоров, очень немногочисленны.

Таблица 2.1

Допускаемая величина зазоров при КТС

Длина
участка

(мм)

Толщина более тонкой детали -- s, мм

0,3 ? s < 1

1 ? s < 1,5

1,5 ? s < 2,5

s ? 2,5

Допускаемая величина зазоров ?, мм

100

0,5

0,4

0,3

0,2

200

1,0

0,8

0,6

0,4

300

1,5

1,2

0,9

0,6

По-видимому, наименее трудоемким было бы расчетное определение величины FД, например, решением известного уравнения С. Жермен - Лагранжа, описывающего прогиб пластинки [96],

, (2.2)

где w - величина прогиба пластинки; x и y - координаты; q - внешняя нагрузка; D - цилиндрическая жесткость листа, равная

;

здесь E - модуль упругости; s - толщина листа; ? - коэффициент Пуассона.

Однако точное решение уравнения (2.2) даже для идеализированных граничных условий представляет большие трудности и, например, по мнению автора работы [97], не всегда оправдано. Кроме того, аналитическое определение величины FД затрудняется еще и тем, что схема закрепления деталей при точечной сварке, например, посредством уже сваренных точек весьма неопределенна. Она не имеет близких аналогов среди идеализированных схем закрепления пластинок в известных [96…98] аналитических решениях этой задачи.

В экспериментальных исследованиях силового взаимодействия деталей при наличии зазоров [91, 99, 100], величина усилия FД, необходимая для сближения свариваемых деталей, определялась как функция комплексного влияния ряда технологических факторов точечной сварки (рис. 2.5):

FД = F(t, t*, u, ?, ?, s, RЭ),

где t - расстояние между сваренными точками; t* - расстояние до соседних сваренных точек; u - расстояние от кромки листа до центра свариваемой точки, которое, как правило, равно половине ширины В нахлестки; ? - угол раскрытия зазора в нахлестке; ? - величина зазора в месте сварки; s - толщина деталей; RЭ - радиус сферы рабочей поверхности электродов.

Так как при точечной сварке зона нагрева ограничена и составляет относительно небольшую часть зоны упругопластической и упругой деформации деталей при их сближении, то считается, что усилие прогиба деталей в процессе сварки не изменяется [95]. Такое допущение позволяет проводить эксперименты по определению FД на холодных образцах вне сварочной машины.

Моделирование зазоров производилось по известной методике, показанной на (рис. 2.6). В этом случае образцы 1 в местах имитации уже сваренных точек сжимались специальными струбцинами 2 усилием 2…8 кН, которое вполне обеспечивало жесткое закрепление образцов толщиной 1…4 мм при их деформировании электродами в месте сварки (рис. 2.6, а). Величина зазора ?, а также угол ? раскрытия зазора в нахлестке устанавливались прокладками 3. Кроме того, зазоры моделировали и по известной методике [95], в соответствии с которой образцы сваривали через размерные прокладки (рис. 2.6, б).

Деформация образцов производилась на экспериментальной установке изготовленной на базе разрывной машины УММ-5 (рис. 2.7).

В ней верхний 1 и нижний 2 электрододержатели с установленными в них электродами закреплены в губках разрывной машины 3 и 4. На нижнем электрододержателе 2 жестко закреплена направляющая скоба 5, в направляющей 6 которой верхний электрододержатель 1 установлен с возможностью осевого перемещения. На кронштейне 7, жестко закрепленном на верхнем электрододержателе 1, установлен индикатор перемещения часового типа 8, установка нуля на котором производится регулировочным винтом 9. Деформируемые детали 10 помещаются между электродами перпендикулярно их оси. Поддерживающее приспособление 11 служит для фиксации пространственного положения деформируемых деталей.

Прогиб ? деформируемых деталей 10 измерялся с точностью ± 0,005 мм по сближению h электродов 1 и 2, а величина деформирующего усилия измерялась по шкале разрывной машины с точностью ± 10 Н. Погрешность ?h измерения сближения деталей h учитывалась как среднестатистическая поправка. Она появляется из-за деформации элементов конструкции установки при нагружении, внецентренного расположения индикатора перемещения и вдавливания электродов в детали. Величина погрешности ?h, которую определяли при сжатии одного листа, зависит от сжимающего усилия FД (рис. 2.8). В итоге прогиб одного листа определялся по выражению

.

В экспериментах использовались образцы из сплавов АМц, Д16Т, АМг6 и МА2-1 размером 300 ? 400 мм и толщиной 1...5 мм. Измерения деформирующего усилия FД при сочетании факторов каждой ячейки производились три раза.

Для определения значимости влияния на величину FД усилия сопротивления деталей их сближению до соприкосновения семи технологических факторов точечной сварки, которые показаны выше (рис. 2.5), планировались четырёхфакторный эксперимент в пяти уровнях (латинский квадрат) и трехфакторный эксперимент в семи уровнях по известным методикам [101…105].

При проведении четырехфакторного эксперимента в пяти уровнях осуществляли проверку значимости влияния на величину FД факторов t*, ?, RЭ и s при неизменных значениях параметров t, ? и u. В результате получены отношения дисперсий факторов к дисперсии воспроизводимости, которые соотносятся с критерием Фишера, для условий данного эксперимента равным 3,9, следующим образом:

; ;

; .

Таким образом, из этого эксперимента следует, что влияние фактора Д, т. е. толщины деталей s, на величину FД значимо, а влияние факторов А, В и С, т. е. t*, ? и RЭ -- не значимо.

Проверку значимости влияния исследуемых факторов t, ?, u на величину FД при неизменных значениях параметров t*, ?, RЭ и s осуществляли проведением трехфакторного эксперимента в семи уровнях. В результате также получены отношения дисперсий факторов к дисперсии воспроизводимости, которые соотносятся с критерием Фишера, который для условий данного эксперимента равен 3,9, следующим образом:

; ; .

Следовательно, все исследуемые в данном эксперименте факторы А, В и С, т. е. расстояние между сваренными точками t, величина зазора в месте сварки ? и расстояние от кромки листа до центра свариваемой точки u на величину FД влияют значимо.

Степень влияния каждого из факторов на величину усилия сопротивления деталей деформации при их сближении FД можно оценить по соотношению дисперсий. Тогда значимо влияющие на величину FД факторы в порядке уменьшения их влияния располагаются следующим образом:

; ; ; .

Таким образом, из семи исследуемых технологических факторов значимо влияют на величину FД только четыре вышеуказанных: толщина деталей s, расстояние между точками t, величина зазора в месте сварки ? и расстояние от кромки листа до центра свариваемой точки u (рис. 2.9). Влияние же расстояния до соседних сваренных точек t*, угла раскрытия зазора в нахлестке ? и радиуса сферы рабочей поверхности электродов RЭ в исследуемом диапазоне их изменения не значимо и находится в пределах статистического разброса измеренных значений FД.

Зависимость FД от значимо влияющих на его величину факторов однозначна при любых их сочетаниях. Величина FД возрастает с увеличением s, ? и u, а также с уменьшением t (рис. 2.9). При этом градиент изменения FД, характеризующий степень влияния каждого из факторов, согласуется с приведенным выше соотношением их дисперсий.

Для определения количественной зависимости между усилием сопротивления свариваемых деталей их прогибу FД и значимо влияющими на его величину технологическими факторами КТС проводились однофакторные эксперименты по общеизвестной методике. Проведенными исследованиями установлено следующее.

С увеличением толщины деталей s характер увеличения усилия сопротивления свариваемых деталей их прогибу FД практически не изменяется при всех сочетаниях остальных значимых факторов (рис. 2.10). Это же можно сказать и о характере уменьшения FД при увеличении расстояния между сваренными точками t (рис. 2.11).

Влияние величины зазора ? и расстояния до кромки листа u на усилие сопротивления свариваемых деталей их прогибу FД не столь однозначно (рис. 2.12). Так, при сжатии деталей у кромки нахлестки, т. е. при небольших значениях u (кривая 1 на рис. 2.12, а) или при небольших отношениях ?/t (рис. 2.12, б), что имеет место при малой величине зазора ? или большом шаге между точками t, увеличение FД происходит практически пропорционально увеличению зазора. Это объясняется тем, что при таких условиях искривление деталей в месте сжатия небольшое, характер деформации листов близок к чистому изгибу и детали деформируются в упругой области (см. рис. 2.1).

При увеличении отношения ?/t деформирование листов переходит от их изгиба к прогибу по типу мембраны. Кривизна деталей в месте сжатия увеличивается и деформации могут выходить за пределы области упругих. В этом случае детали в области, прилегающей к месту сжатия, могут деформироваться упруго-пластически или даже пластически. В следствие этого прямо пропорциональная зависимость усилия FД от величины зазора ? нарушается и рост величины FД замедляется (рис. 2.12, а).

С увеличением расстояния до кромки нахлестки u усилие сопротивления свариваемых деталей их прогибу увеличивается FД (рис. 2.13). Однако в этом случае рост FД происходит только до определенного соотношения между параметрами ?, u и t, а затем прекращается (рис. 2.13, а, б).

Это объясняется тем (см. рис. 2.1), что по мере увеличения отношения u/t характер деформации деталей изменяется от состояния, близкого к чистому изгибу (при малых значениях отношений u/t и ?/t), к состоянию, близкому к чистому прогибу по типу мембраны (при увеличении отношений u/t и ?/t). При достижении отношением u/t определенного значения, которое зависит от соотношения s и ?, соответствующего переходу к прогибу по типу мембраны (рис. 2.1, г), дальнейшее увеличение u на усилие FД практически не влияет.

2.1.3. Экспериментально-расчетный метод определения усилия
деформир
ования деталей при их сближении

В связи с тем, что точно рассчитать величину усилия сопротивления свариваемых деталей их прогибу FД решением уравнения (2.2) для условий точечной сварки представляет большие трудности, то для решения технологических задач рационально использовать приближенный экспериментально-расчетный метод определения при КТС усилий, необходимых для деформирования деталей до их соприкосновения [91, 100]. Его суть заключается в следующем.

Результаты экспериментальных измерений величины усилия сопротивления свариваемых деталей их прогибу FД при различных сочетаниях технологических факторов значимо влияющих на его величину, приближенно можно описать следующими функциями, которые выражают зависимость FД от каждого из них при неизменных значениях остальных:

,

где f1, f2, f3, f4 - функции удовлетворяющие равенствам, которые представляется возможным определить по экспериментальным результатам деформирования свариваемых деталей при конкретных условиях точечной сварки; w - прогиб одной свариваемой детали.

Тогда можно предположить, что существует некая функция f5, которая удовлетворяет условию

. (2.3)

Толщину деформируемых деталей в зависимости (2.3) можно выразить через цилиндрическую их жесткость D по зависимости 2.2

,

а величину прогиба свариваемой детали w -- через величину зазора ?

,

где D1, D2 -- цилиндрическая жесткость деталей, причем D1 жесткость более тонкой детали.

С учетом приведенных выше зависимостей выражение (2.3) можно преобразовать к следующему виду:

, (2.4)

где f6 - функция, удовлетворяющая равенству.

Эмпирическая зависимость (2.4) структурно согласуется с зависимостями, полученными при аналитических решениях задач прогиба пластинки для идеализированных граничных условий, например, в работе [97].

Анализом результатов экспериментальных исследований зависимости величины усилия сопротивления свариваемых деталей их прогибу FД от значимо влияющих на неё технологических факторов точечной сварки установлено, что параметры u/t, (w/t) и s влияют на величину FД не однозначно. Так, в области упругих деформаций прогиба деталей значение функции f6 в основном зависит только от параметра . В области же деформаций упругопластических -- значения функции f6 уменьшаются с увеличением параметра (w/t) и толщины деталей s.

Определено, что с достаточной для приближенных технологических расчетов точностью функции f6 может быть аппроксимирована зависимостью вида

,

где А и В - экспериментально определяемые коэффициенты, которые зависят, соответственно, от параметров (u/t) -- и от параметров (w/t) и s -- (рис. 2.14).

Тогда, с учетом сказанного выше, зависимость (2.4) для расчетного определения величины усилия FД сопротивления свариваемых деталей их прогибу можно преобразовать к следующему окончательному виду

, (2.5)

где ? -- величина зазора в месте сжатия; D1 и D2 -- цилиндрическая жесткость деталей (см. зависимость 2.2), причем при неодинаковой их толщине: D1 жесткость более тонкой детали; А и В - экспериментально определяемые коэффициенты (рис. 2.14); t -- расстояние между точками.

Сравнение значений FД при различных сочетаниях значимо влияющих на него технологических факторов, в частности, приведенных в
табл. 2.2, показало, что относительное отклонение усилия в плоскости свариваемого контакта ?F от усилия сжатия деталей электродами FЭ при сварке деталей этих толщин, равное

, (2.6)

даже при исследуемых величинах зазоров (до 3-х мм) находятся в пределах 0,5…10 %. При встречающихся в практике КТС сочетаниях t, ? и s значения ?F не превышают 2…5 %.

Таким образом, полученная зависимость (2.5), позволяет при решении технологических задач расчетным путем приближенно определять величину усилия FД, необходимого для сближения свариваемых деталей до соприкосновения их поверхностей при конкретных условиях сварки, и с достаточной для практики точностью прогнозировать возможное отклонение усилия сжатия в площади свариваемого контакта от усилия сжатия деталей электродами.

2.2. Формирование контактов при сжатии деталей электродами

Исходным условием осуществления процесса контактной точечной сварки является наличие электрической проводимости между токопроводящими электродами, что невозможно без наличия её в контактах деталь-деталь и электрод-деталь. То, что величина и стабильность начального электрического сопротивления контактов существенно влияют на тепловые процессы в зоне сварки и, в конечном итоге, на качество готового соединения можно считать однозначно установленным. Это подтверждается многочисленными результатами исследований процесса КТС как отечественных [3, 4, 7...17, 106...115], так и зарубежных [116…120] исследователей. И только в немногочисленных исследованиях [121, 122] получены противоположные результаты.

В свою очередь, образованию электрических контактов деталь-деталь или электрод-деталь должно предшествовать образование между ними хотя бы очагов контактов механических [4, 13].

Таблица 2.2

Значения FД при различных сочетаниях s, t, u и ?


пп

Сочетания факторов

FД (кН)

Отклонения FДэксп от FДрасч. (%)

FЭ (кН)

Отклонения ?F
(%)

s

t

u

?

Экспериментальные значения

Расчетные значения

1

1,0

30

8

0,5

0,110

0,133

17,6

5,0

2.6

2

-?-

-?-

-?-

1,0

0,280

0,256

9,3

-?-

5,1

3

-?-

-?-

-?-

1,5

0,350

0,373

6,5

-?-

7,4

4

-?-

-?-

-?-

2,0

0,460

0,487

5,8

-?-

9,6

5

-?-

100

-?-

1,0

0,020

0,014

4,2

-?-

0,2

6

-?-

-?-

-?-

2,0

0,030

0,027

11,1

-?-

0,5

7

-?-

-?-

-?-

3,0

0,040

0,041

2,6

-?-

0,8

8

2,0

50

10

0,5

0,270

0,303

11,4

11,0

2,7

9

-?-

-?-

-?-

1,0

0,640

0,607

5,5

-?-

5,4

10

-?-

-?-

-?-

1,5

0,930

0,896

3,8

-?-

8,1

11

-?-

-?-

-?-

2,0

1,130

1,182

4,4

-?-

10,7

12

-?-

100

-?-

1,0

0,100

0,116

15,2

-?-

1,0

13

-?-

-?-

-?-

2,0

0,250

0,235

6,3

-?-

2,2

14

-?-

-?-

-?-

3,0

0,360

0,349

3,2

-?-

3,2

15

3,0

70

13

0,5

0,470

0,511

6,0

16,0

3,1

16

-?-

-?-

-?-

1,0

0,940

1,011

7,0

-?-

6,3

17

-?-

-?-

-?-

1,5

1,610

1,509

6,6

-?-

9,9

18

-?-

-?-

-?-

2,0

0,207

1,979

4,7

-?-

12,3

19

-?-

100

-?-

1,0

0,460

0,438

5,0

-?-

2,6

20

-?-

-?-

-?-

2,0

0,850

0,864

1,6

-?-

5,3

21

-?-

-?-

-?-

3,0

1,320

1,278

3,2

-?-

7,9

Таким образом, формирование контактов при КТС включает в себя, по крайней мере, два, различающихся между собой, процесса: формирование механических контактов; формирование электрических контактов, которые во временной последовательности протекают одновременно после сближения свариваемых деталей до соприкосновения их поверхностей.

2.2.1. Формирование механических контактов

Реальные поверхности деталей всегда имеют микроскопические неровности (рис. 2.15), поскольку они образуются не только при механической обработке поверхностей [12, 13], но даже и при кристаллизационных [12] или рекристаллизационных [123] процессах в металлах. Эти неровности в технологии машиностроения характеризуют шероховатостью и волнистостью. Их параметры, включая и терминологию, регламентированы ГОСТами [124, 125].

Если бы поверхности деталей были идеально гладкими и плоскими, то контакты между ними существовали бы по всей площади сопрягаемых поверхностей. Эту площадь принято называть «номинальной площадью контакта» и обозначать Аа (рис. 2.16). Следовательно, при точечной сварке «номинальной площадью контакта» Аа является вся площадь нахлестки. Наличие на поверхностях реальных деталей шероховатости и волнистости приводит к тому, контакт между ними не будет сплошным. Лишь отдельные участки поверхностей воспринимают усилия сжатия. Сумма таких дискретных площадок контакта образует «фактическую площадь контакта», которую принято обозначать Аr. Единичные пятна фактического контакта располагаются неравномерно, отдельными областями. Эти области сосредоточения пятен фактических контактов, обведенные контурами, в сумме составляют «контурную площадь контакта», которую обозначают Ас. Тогда можно считать, что при контактной точечной сварке «контурной площадью контакта» Ас является вся площадь внутри контура уплотняющего пояска. Такая классификация площадей контактов общепринята в технологии машиностроения [126, 127] и сварки [4, 12, 13, 92, 128, 129].

При контактировании жестких тел величина контурной площади контакта определяется геометрическими характеристиками их поверхностей, в основном волнистостью, а также, хотя и в значительно меньшей мере, и шероховатостью [126, 127, 130...135]. При точечной сварке кроме волнистости и шероховатости на контурную площадь контактов оказывает влияние распределение нагрузки, которое зависит от площади (при плоской) или радиуса (при сферической) рабочих поверхностей электродов, и толщина свариваемых деталей вследствие относительно небольшой жесткости последних [4, 13,81, 92, 136].

В теории контактной точечной сварки наиболее известны две методики расчетного определения контурной площади контактов АС [10, 13]:

, (2.7)

, (2.8)

где FЭ -- усилие сжатия электродов; ?Т -- предел текучести материала деталей; Аа -- номинальная площадь контакта; Z -- показатель степени, который учитывает нагрузку и сопротивление деформации металла деталей

или ;

здесь ? -- опытный коэффициент; Т -- температура в контакте; ? -- удельная нагрузка: ; ТПЛ -- абсолютная температура плавления металла; ?СД -- сопротивление деформации металла в масштабе волнистости.

Значения контурной площади АС, рассчитанные по зависимости (2.7), значительно превышают экспериментальные значения, например, приведенные в работах [92, 128, 129]. Экспериментальные данные, а также теоретические исследования [81, 136] однозначно показывают, что при точечной сварке контурная площадь практически не зависит от площади нахлестки, то есть от номинальной площади контакта Аа. Поэтому возможность применения зависимости (2.8) для практических расчетов в условиях точечной сварки весьма проблематична. Кроме того, вычисления по зависимости (2.8) весьма трудоемки, так как могут быть произведены только методом итераций, поскольку искомая величина АС входит и в правую ее часть для определения величины удельной нагрузки ?.

Сведения же о фактической площади контактов при точечной сварке и механизме ее формирования весьма ограничены. Так, в работе [92] экспериментально установлено, что она составляет 1…25 % от контурной площади контакта. При этом отмечается, что в случае сжатия деталей электродами с плоской рабочей поверхностью пятна единичных микроконтактов распределяются почти равномерно по всей контурной площади. В случае же сжатия деталей электродами со сферической рабочей поверхностью плотность единичных контактов растет к ее периферии.

Для расчета фактической площади контакта Аr в работе [13] предложена зависимость, которая структурно аналогична зависимости (2.8)

, (2.9)

где: Х -- показатель степени, равный

или ;

здесь ? -- опытный коэффициент; ?? -- давление, действующее в площади единичного микроконтакта; Т? -- температура микровыступов в контакте; ?СД? -- сопротивление деформации металла в масштабе микровыступов.

Расчеты фактической площади контакта Аr по зависимости (2.9) затрудняются теми же обстоятельствами, что и расчет контурной площади по зависимости (2.8). Причем определение температуры и свойств металла в масштабе микровыступов весьма неопределенно.

При сварке деталей из алюминиевых и магниевых сплавов относительные деформации микрошероховатостей на их поверхности достигают 60…70 %. Причем их значения в контакте электрод-деталь в 1,3...1,4 раза больше, чем в контакте деталь-деталь [129]. Такой уровень микродеформаций в контактах электрод-деталь может приводить к схватыванию металлов детали и электрода (по механизму сварки давлением в твердой фазе [12, 137]) и такому нежелательному при точечной сварке явлению, как массоперенос металлов между поверхностями деталей и электродов [128].

2.2.2. Формирование электрических контактов

Образование механических микроконтактов в фактических площадях контактов еще не гарантирует наличие в нем контакта электрического [4, 13]. Это обусловлено тем, что идеально чистая (ювенильная), металлическая поверхность существует только короткие моменты времени (доли секунды) в изломе металла или в первые мгновения после её механической обработки [4, 12, 13]. Очистка и предотвращение последующего возникновения поверхностного загрязнения деталей в технологических процессах сварки давлением в основном удаётся только в вакуумных устройствах [137...140]. В силу конструктивных особенностей таких устройств [141...144] использовать их при точечной сварке экономически и технологически не целесообразно.

Реальные же поверхности свариваемых деталей всегда покрыты окисной пленкой, состав и толщина которой зависит от рода металла или сплава, от состава, давления и температуры газовой фазы, а так же от продолжительности их воздействия (рис. 2.17).

На поверхности окисных пленок возможно наличие адсорбированных газов, влаги и органических веществ, и прочих наслоений [3, 4, 12, 13, 145...151]. Последние значительно затрудняют сближение металлических поверхностей, так как вещество граничного слоя при сжатии приобретает упругость твердого тела [12, 148]. Поэтому фактическую площадь даже единичного контакта условно можно разделить на три (см. рис. 2.16). К первой, Аrм -- относятся участки с металлическим контактом, в которых электрический ток протекает без заметного переходного сопротивления, как это имеет место между кристаллами в компактном металле. Ко второй, Аrпл -- участки с квазиметаллическим контактом, поверхность которых покрыта тонкой пленкой, легко пропускающей ток благодаря туннельному эффекту [152] или фриттинг эффекту [13]. К третьей же, Аrмо-- участки, не проводящие ток и покрытые мономолекулярными плёнками (окислы, сульфаты и т. п.), которые практически играют роль изоляторов [13, 152].


Подобные документы

  • Особенности контактной точечной сварки, ее достоинства и недостатки, основные параметры. Изменение параметров во времени. Схема шунтирования тока через ранее сваренную точку. Режимы точечной сварки низкоуглеродистых сталей. Подготовка деталей к сварке.

    реферат [730,5 K], добавлен 22.04.2015

  • Основные виды контактной сварки. Конструктивные элементы машин для контактной сварки. Классификация и обозначение контактных машин, предназначенных для сварки деталей. Система охлаждения многоэлектродных машин. Расчет режима точечной сварки стали 09Г2С.

    контрольная работа [1,1 M], добавлен 05.09.2012

  • Технологичность сварной конструкции. Оценка свариваемости металла. Расчёт параметров контура контактной машины. Технология сборки и сварки. Сварочные напряжения и деформации, меры борьбы с ними. Методы контроля качества. Планировка рабочего места.

    курсовая работа [8,1 M], добавлен 24.11.2013

  • Принцип контактной электрической сварки. Основные виды электрической контактной сварки: стыковая сопротивлением и точечная; последовательность операций. Технология электрической контактной сварки и подготовка заготовок. Получение стыкового соединения.

    контрольная работа [499,4 K], добавлен 25.11.2012

  • Понятие и характеристики стыковой сварки. Несплошности зоны точечной сварки; природа их образования и меры предупреждения. Основные правила выбора режима сварки: геометрических параметров электродов, время, силы сварочного тока и усилие сжатия.

    курсовая работа [766,1 K], добавлен 26.01.2014

  • Определение геометрических размеров сварных точек и шаг точек. Расчет тепловых затрат. Режим точечной сварки для низкоуглеродистой стали. Выбор формы рабочей части нижнего и фигурного электродов. Величина давления при стыковой сварке оплавлением.

    контрольная работа [501,9 K], добавлен 12.03.2015

  • Сущность и классификация методов контактной сварки по форме сварного соединения, роду сварочного тока и характеру протекания производственного процесса. Оценка преимуществ и недостатков контактной сварки, используемое в ней оборудование и материалы.

    презентация [1,0 M], добавлен 04.07.2014

  • Изучение процесса получения неразъемного соединения конструкции прокладки форсунки с помощью точечной контактной сварки. Обоснование выбора материала изделия. Оценка свариваемости материала. Расчет температурных полей от движущихся источников тепла.

    курсовая работа [325,6 K], добавлен 25.04.2015

  • Условия эксплуатации ручки к кастрюле. Технология контактной сварки. Оценка свариваемости материала конструкции. Выбор типа соединения, вида и способа сварки. Подготовка поверхности деталей. Расчет режима сварки, электродов и силового трансформатора.

    курсовая работа [585,5 K], добавлен 15.02.2013

  • Классификация электрической сварки плавлением в зависимости от степени механизации процесса сварки, рода тока, полярности, свойств электрода, вида защиты зоны сварки от атмосферного воздуха. Особенности дуговой сварки под флюсом и в среде защитных газов.

    презентация [524,2 K], добавлен 09.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.