Основы теории и технологии контактной точечной сварки

Основы теории и технологии контактной точечной сварки. Процессы, протекающие при контактной точечной сварке: деформирования свариваемых деталей; формирования механических и электрических контактов, электрической проводимости зоны сварки; нагрева металла.

Рубрика Производство и технологии
Вид учебное пособие
Язык русский
Дата добавления 21.03.2008
Размер файла 8,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Разработка математической модели температурного поля по расчетно-экспериментальному методу, в сущности, сводится к определению и математическому описанию взаимосвязей аппроксимирующих функций (3.24), описывающих изменение температуры по координатам z и r, и функции (3.25), описывающей ее изменение по времени t.

При описании изменения температуры TZt по оси электродов (по координате z), в дискретный момент времени t, значения коэффициентов b и a в зависимости (3.24) применительно к конкретному процессу сварки можно найти, если представляется возможным экспериментально определить значения температуры в характерных точках в разные моменты процесса сварки. Для этого, предварительно для момента времени t преобразовав зависимость (3.24) к виду

, (3.26)

можно составить систему уравнений, учитывая, что при z = hЯt/2 температура TZt = TПЛ, а при z = s -- TZt = TЭt:

,

где для момента времени t, hЯt -- высота ядра расплавленного металла;
TЭt -- температура на поверхности деталей под электродами; TПЛ -- температура плавления свариваемого металла; s -- толщина деталей.

Решив эту систему уравнений, находим значения коэффициентов bt и aZt:

, ,

подставив которые в (3.26) получим зависимость для расчета температуры TZt на оси электродов в точке с координатой z в момент времени t. После преобразований она будет иметь следующий вид:

. (3.27)

Эта зависимость имеет хорошую сходимость результатов при расчете изменения температуры по координате z, с результатами расчетов температуры численными методами, в частности, методом конечных разностей (рис. 3.7). Это, например, подтверждается на изменением температуры по оси электродов в момент выключения сварочного тока при сварке сплава АМг6 (рис. 3.7, а), рассчитанное по формуле (3.27) и методом конечных разностей в работе [165].

Для расчета в момент времени t изменения температуры Trt по координате r зависимость (3.24) преобразуем к виду

. (3.28)

Определить коэффициенты и аrt можно аналогично тому, как определяли коэффициенты aZt и bt, по известным значениям температуры Trt в характерных точках (рис. 3.5, б): при r = dПt/2 значение температуры Trt на границе уплотняющего пояска равно TП, то есть Trt = TП, при r = dЯt/2 -- Trt = TПЛ и при r = 0 -- Trt = TМ.

Поскольку в точке с координатами и температура имеет максимальное значение TМ, то из зависимостей (3.27) и (3.28) можно записать следующее соотношение:

,

из которого можно определить коэффициент для данных условий

,

а зависимость для расчета температуры по координате r можно записать следующим образом:

.

Поскольку на границе ядра расплавленного металла при металл нагрет до температуры его плавления TПЛ, то из этой зависимости можно определить значение коэффициента аrt, которое будет равно

. (3.29)

Тогда зависимость для расчета изменения температуры по координате r в окончательном варианте имеет следующий вид

. (3.30)

Изменение температуры по координате r в момент выключения сварочного тока, рассчитанное по зависимости (3.30), также хорошо согласуется с результатами расчетов методом конечных разностей (рис.3.7, б).

Для расчетов изменения температуры в любой точке плоскости z - r зависимости (3.27) и (3.30) следует объединить. Это можно сделать, если учесть, что температурное поле неразрывно, а температура на оси электродов TZt при любом значении координаты z является максимальным значением температуры ТМ по координате r, т. е. при r = 0 значение TZt = ТМ. Из зависимостей (3.27) и (3.30) это соотношение температур по координатам z и r можно выразить следующим образом:

.

Отсюда после преобразований получаем зависимость для расчета температуры в момент времени t в любой точке плоскости z - r в пределах зоны сварки, которая имеет следующий вид:

. (3.31)

Характер изменения температурного поля по координатам z и r, рассчитанный по зависимости (3.31) в момент выключения сварочного тока, показан на рис. 3.8.

Зависимость (3.31) описывает изменение температурного поля в любой точке плоскости z - r только в отдельные дискретные моменты

времени t. Для анализа термодеформационных процессов в зоне сварки необходимо математически описать изменение температуры в каждой ее точке и по времени. Это можно сделать, если с зависимостью (3.31) функционально увязать зависимость (3.25), которая и описывает изменение тем

пературы по времени.

Определить значения коэффициентов n и c в зависимости (3.25) можно исходя из следующего.

В момент времени tНП начала плавления металла в контакте деталь-деталь температура в точке с координатами z = 0 и r = 0 равна значениям температуры плавления металла ТПЛ, т. е. при t = tНП -- Tt = ТПЛ. В момент же окончания импульса тока tСВ температура в контакте деталь-деталь достигает максимальных значений ТМ, т. е. при t = tСВ -- Tt = ТМ. Это позволяет составить следующую систему уравнений

,

после решения которой и находим искомые коэффициенты n и c:

, .

Тогда зависимость для расчета изменения температуры в центре контакта деталь-деталь можно записать в виде

, (3.32)

где с -- коэффициент, определяемый для момента t = tСВ, т. е. по конечной высоте ядра hЯ, и равный

,

где aZ - значение коэффициента aZt, определяемого по зависимости (3.27) также для момента t = tСВ, т. е. так же по конечной высоте ядра hЯ и максимальной температуре TЭ в контакте электрод-деталь:

.

Характер изменения температуры в центре свариваемого контакта, рассчитанный по зависимости (3.32) для различных условий сварки, показан на рис.3.9. Такое изменение температуры вполне согласуется с имеющимися данными, полученными как экспериментально, так и расчетами методом конечных разностей.

Выразим значение температуры плавления металла ТПЛ в формуле (3.32) через ТМ из формулы (3.31) при z = 0 и r = 0

и подставим это выражение в зависимость (3.32). Тогда эту зависимость можно преобразовать к следующему виду:

. (3.33)

Если допустить, что характер изменения температуры по времени от нуля до ее максимальных значений в любой точке зоны формирования соединения подобен характеру изменения температуры в центре контакта деталь-деталь, то значение ТМ в зависимости (3.33) равно значению Тz,r,t рассчитанному по зависимости (3.31). Тогда зависимость (3.33) с учетом (3.31) и (3.29) можно преобразовать к следующему виду:

. (3.34)

Зависимость (3.34) описывает изменение температуры в зоне сварки на стадии нагрева по координатам z и r, а также по времени t при допущении, что характер изменения температуры по времени во всех точках зоны формирования точечного сварного соединения подобен характеру изменения температуры в центре контакта деталь-деталь.

Однако, в действительности, как показали расчеты температурных полей методом конечных разностей, характер изменения температуры по времени на периферии зоны сварки несколько иной, чем характер изменения температуры в центре контакта деталь-деталь. Это означает, что величина коэффициентов az и ar, характеризующих градиент температуры по координатам z и r, должна изменяться по времени и зависеть от условий сварки, в частности, от формы рабочей поверхности электродов.

Проведенные исследования показали, что изменение значений коэффициентов az и ar может быть аппроксимировано функцией вида [217]

, (3.35)

где at и a - текущие и конечные значения коэффициента az или ar при их изменении по времени; т и п - экспериментально определяемые коэффициенты аппроксимации.

Тогда окончательно формулу для расчета изменения температуры в любой точке зоны сварки в любой момент времени в интервале 0 < t ? tСВ с учетом сказанного выше можно представить в следующем виде:

, (3.36)

где t -- координата времени; c, azt и art - коэффициенты, характеризующие изменение в процессе сварки градиента температуры по цилиндрическим координатам z и r и времени t:

, , ,

, ;

ТЭ -- максимальное значение температуры в контакте электрод-деталь;
tНП -- время начала плавления металла в контакте деталь-деталь; m1, n1, m2 и n2 -- опытные коэффициенты, учитывающие изменение во времени градиента температуры по координатам z и r (см. ниже табл. 3.2).

Известные трудности при расчетах температуры по зависимости (3.36) представляет точное определение для конкретных условий сварки момента начала плавления металла в контакте деталь-деталь tНП, максимальной температуры в контакте электрод-деталь ТЭ, а также коэффициентов m1, n1, m2 и n2, которые учитывают изменение во времени градиента температуры по координатам z и r. Несомненно, что при решении научно-исследовательских задач они в каждом конкретном случае должны определяться индивидуально. При приближенных технологических расчетах они могут быть определены по приведенным ниже обобщенным данным.

Наиболее просто определять момент tНП начала плавления металла в контакте деталь-деталь. Это можно осуществить прерыванием процесса сварки (на серийных машинах это можно сделать с шагом 0,02 или 0,01 с). Установлено, что с увеличением жесткости режима сварки момент начала плавления металла tНП смещается к началу процесса и существует корреляционная зависимость между значением tНП и проплавлением деталей, выраженным отношением высоты ядра расплавленного металла к суммарной толщине деталей hЯ/2s. Усредненная для способов КТС зависимость значений tНП от проплавления деталей hЯ/2s, показанная на рис. 3.10, вполне удовлетворительно описывается функцией, интерполированной по полиному Лагранжа [217]:

, (3.37)

где tСВ - время сварки; hЯ - высота ядра; s -толщина детали.

Экспериментальное определение максимального значения температуры в контакте электрод-деталь ТЭ не имеет принципиальных препятствий. Это можно сделать по любой из известных методик, например, описанным в работах [14, 207]. Основная трудность таких измерений -- это их относительно большая трудоемкость.

Проведенными исследованиями и обработкой известных результатов экспериментов других исследователей, а также результатов расчетов температуры методом конечных разностей, установлено наличие корреляционной зависимости между максимальным значением температуры в контакте электрод-деталь ТЭ и относительным проплавлением деталей hЯ/2s (рис. 3.10). Зависимость удовлетворительно описывается следующей, относительно простой, аппроксимированной функцией:

, (3.38)

где ТПЛ -- температура плавления металла; hЯ -- высота ядра; s --толщина свариваемых деталей.

Наиболее трудоемко определение изменения в процессе формирования соединения коэффициентов azt и art, характеризующих изменение градиента температуры по координатам z и r. Для этого необходимо измерять значения температуры в характерных точках (см. рис. 3.5), а затем определять значения azt и art обратным расчетом по зависимости (3.36). Трудоемкость определения этих коэффициентов можно несколько уменьшить после начала плавления металла. Для этого экспериментально следует измерять изменение высоты hЯt и диаметра dЯt ядра, а коэффициенты azt и art так же определять обратным расчетом по зависимостям (3.40) и (3.41). Обработкой значительного числа экспериментальных данных установлено, что характер изменения коэффициентов azt и art в процессе формирования точечных сварных соединений зависит в основном от геометрии рабочей поверхности электродов и жесткости режимов сварки.

Наиболее близкий характер изменения градиента температуры по координатам z и r в процессе формирования соединения при сварке электродами со сферической рабочей поверхностью (рис. 3.11). При сварке электродами со сферической рабочей поверхностью плавление металла начинается в относительно небольшом объёме и увеличение высоты hЯt (рис. 3.11, а) и диаметра dЯt (рис. 3.11, б) ядра происходит плавно. Это обусловлено тем, что градиент изменения температуры по координатам z и r в начале процесса нагрева весьма высок, а в процессе сварки плавно уменьшается, вследствие чего уменьшаются и значения коэффициентов azt (рис. 3.11, а) и art (рис. 3.11, б).

Изменения градиента температуры по координатам z и r в процессе формирования соединения при сварке электродами с плоской рабочей поверхностью различаются в большей степени, в особенности в начале процесса сварки (рис. 3.12).

При сварке электродами с плоской рабочей поверхностью плавление металла начинается по большей площади контакта, чем при сварке электродами со сферической рабочей поверхностью, что обусловлено меньшим градиентом температуры по координате r. Затем, увеличение высоты hЯt (рис. 3.12, а) и диаметра dЯt (рис. 3.12, 6) ядра также происходит плавно. Градиент изменения температуры по координате z изменяется аналогично предыдущему, соответственно изменяется и azt (рис. 3.12, а). Отличия носят лишь количественный характер. Градиент же изменения температуры по координате r в процессе сварки, в отличие от предыдущего случая, почти не изменяется, хотя в начальной стадии наблюдается повышенный его разброс. Это предопределяет относительно большие начальные значения диаметров ядра (рис. 3.12, б) и относительно не большие изменения значений art (рис. 3.12, б).

При точечной сварке с обжатием периферийной зоны соединения плавление металла начинается по еще большей площади контакта, чем при сварке электродами с плоской рабочей поверхностью (рис. 3.13).

Затем, увеличение высоты hЯt (рис. 3.13, а) и диаметра dЯt
(рис. 3.13, б) ядра также происходит плавно. Градиент изменения температуры по координате z изменяется аналогично предыдущим случаям, соответственно изменяется и azt (рис. 3.13, а). Отличия носят лишь количественный характер. Градиент же изменения температуры по координате r, в отличие от предыдущих случаев, в начале процесса сварки меньше чем в конце и монотонно возрастает в процессе формирования соединения. Это предопределяет несколько большие начальные значения диаметров ядра (рис. 3.13, б) и увеличение значений art в процессе сварки (рис. 3.12, б).

Конечно, полученные таким образом значения коэффициентов azt и art весьма приближённы, но, как показали сравнения расчётных и экспериментальных значений температуры и размеров ядра, приемлемы для решения приближенных технологических задач. Для практических расчетов полученные значения коэффициентов azt и art обобщены аппроксимированными функциями, описывающими их изменение в процессе формирования соединений (зависимости (3.35) и (3.36)). Значения коэффициентов m1, n1, m2 и n2, необходимые для расчетов температуры в зоне формирования соединения по данному расчетно-экспериментальному методу, для различных условий сварки обобщены в табл. 3.2 [215, 217].

Таблица 3.2

Значения коэффициентов m1, n1, m2 и n2 для расчетов температуры в зоне формирования соединения при различных условиях сварки

Условия точечной сварки

Значения коэффициентов*)

m1

n1

m2

n2

Электродом со сферической рабочей поверхностью

1,9...2,1

0,5...0,7

1,4...2,1

0,5...0,7

Электродом с плоской рабочей поверхностью

1,6...1,9

0,35...0,45

1,9...2,1

0,45...0,55

С обжатием периферии сварной точки

1,2...1,8

0,25...0,35

0,05...0,8

0,35...0,45

*) Большие значения относятся к более жестким режимам

Изменение температуры в процессе КТС в различных точках зоны сварки, рассчитанное по данному расчетно-экспериментальному методу, в частности, в центре контакта деталь-деталь, в контакте электрод-деталь вполне согласуется с имеющимися данными, полученными экспериментально (осциллографированием) и расчетами методом конечных разностей и конечных элементов (рис 3.14).

Так, температура в центре контакта деталь-деталь (кривая 1) быстро, за время равное 0,1...0,2 tСВ, нарастает до температуры, близкой к температуре плавления, а затем рост температуры замедляется. Причем изменение температуры в центре контакта деталь-деталь, рассчитанное по формулам (3.34) и (3.36) совпадает. Это объясняется тем, что она не зависит от координат, т. е. градиента температуры в зоне сварки, и фактически определяется зависимостью (3.33). Изменение же температуры в контакте электрод-деталь, рассчитанное по зависимости (3.36) (кривая 2), ближе к экспериментальным результатам (кривые 3), чем рассчитанное по зависимости (3.34) (кривая 4), поскольку она учитывает различия градиента температуры в разных точках зоны сварки.

Температурное поле в зоне сварки по координатам и времени отличается весьма высоким градиентом температур (рис. 3.15).

Характер изменения температурного поля по координатам и времени вполне соответствует имеющимся данным, полученным как экспериментально, так и решениями дифференциальных уравнений методами конечных разностей и конечных элементов.

3.3.2 Методики расчетного определения размеров ядра и средних
значений темпер
атуры в зоне сварки

При решении большинства технологических задач КТС, в частности определения силовых параметров режимов сварки, возникает необходимость в расчетном определении размеров ядра (как правило, его диаметра и высоты) и средних значений температуры в определенных участках зоны формирования соединения.

Размеры ядра расплавленного металла можно определить по положению изотермы температуры плавления, в частности, высоту hЯt и диаметр dЯt ядра можно определить по координатам пересечения изотермы температуры плавления ТПЛ с координатными осями z и r. Положение изотермы любой температуры в зоне формирования соединения в любой момент времени можно определить из зависимости (3.36), если значение температуры изотермы ТИ подставить в ее левую часть. После преобразований получаем выражение:

, (3.39)

которое является общеизвестным [208] уравнением эллипса, но только с изменяющимися по времени полуосями.

Например, расположение изотерм (рис. 3.16), показанных сплошными линиями и рассчитанных по зависимости (3.39) для тех же условий сварки, для которых они рассчитывались в работе [165] решением дифференциальных уравнений методом конечных разностей (пунктирные линии), почти совпадают между собой. В частности, в приведенном примере положение изотермы ТИ = 600 ?С показывает контур ядра расплавленного металла (температура плавления ТПЛ сплава АМг6 ~ 623 ?С). Причем изотерма ТИ = 600 ?С, рассчитанная по зависимости (3.39), в большей мере совпадает с контуром ядра, определённым по макрошлифу. Это объясняется тем, что расчетно-экспериментальный метод закладываются конечные размеры (высота hЯ и диаметр dЯ) ядра. Таким образом, при ТИ = ТПЛ зависимость (3.39) описывает контур ядра расплавленного металла:

.

Поскольку полуоси эллипса изотермы температуры плавления равны половине высоты и диаметра ядра, то по этой зависимости можно определить их значения в любой момент времени t процесса формирования ядра. После преобразований получены формулы для расчета высоты hЯt и диаметра dЯt ядра в любой момент времени t после начала плавления металла (времени tНП, которое можно определить по зависимости (3.37)) до окончания импульса сварочного тока (при tНП< t ? tСВ) [217]:

, (3.40)

, (3.41)

где azt и art -- коэффициенты, характеризующие изменение градиентов температуры по координатам z и r, которые можно определить по зависимости (3.36) с использованием данных табл. 3.2.

Изменение высоты и диаметра ядра в процессе его формирования, рассчитанные по формулам (3.40) и (3.41), вполне согласуются с данными, полученными из практики КТС (рис. 3.17). Данные формулы дают удовлетворительную сходимость расчетных и экспериментальных результатов (показаны точками), расхождение которых не превышает ± 10 %.

Среднюю температуру по одной из координат z или r, или же по участку плоскости z -- r в момент времени t можно определить из зависимости (3.36), используя общеизвестную [208] теорему о среднем, согласно которой средняя температура по координатам z или r на участках z2 - z1 или r2 - r1, а также по элементу площади SПt в плоскости z -- r, может быть выражена следующими зависимостями:

,

,

.

Точные вычисления средних значений температуры в зоне сварки по приведенным выше зависимостям невозможны из-за того, что интегралы вида , которые содержатся в вышеуказанных зависимостях, при четных значениях n аналитически не вычисляются [208]. В таких случаях, как правило, подобные интегралы путем подстановок сводят к интегралам, значения которых вычислены приближенными методами. Для данного случая наиболее подходящим из вышеуказанных является интеграл вида erf (y), который называют erf-функцией или функцией ошибок. Его табличные значения приведены справочниках, например, в [208].

После подстановок, вычисления интегралов и преобразований зависимости для количественных расчетов средних значений температуры в зоне сварки по координатам z или r, а также по площади SПt в плоскости
z -- r, имеют следующий вид:

, (3.42)

, (3.43)

, (3.44)

где для момента времени t, Т(z,t)ср -- средняя температура по координате z на участке z2 - z1 при любом значении r; Т(r,t)ср -- средняя температура по координате r на участке r2 - r1 при любом значении z; Т(z,r,t)ср -- средняя температура по любому прямоугольному элементу площади в плоскости оси электродов z -- r; erf (y) -- функция ошибок, которая представляет собой интеграл вида

.

Для распределения температуры в зоне сварки Tz и Tr по координатам z и r (рис. 3.18), рассчитанного по зависимости (3.36) для момента окончания нагрева, значения средней температуры по координатам z и r в пределах ядра расплавленного металла (кривая 1), на оси электродов от границы ядра hЯ до поверхности листа, толщиной s (кривая 2), в плоскости свариваемого контакта между границами ядра dЯ и пояска dП (кривая 3), рассчитанные по зависимостям (3.42) и (3.43), а также значение средней температуры в плоскости z -- r по площади зоны сварки, которая ограничена уплотняющим пояском dП и поверхностью свариваемых деталей, рассчитанное по зависимости (3.44) при z1 = r1 = 0, z2 = s, r2 = dП, вполне соответствует существующим представлениям о нагреве металла в процессе формирования точечного сварного соединения.

Таким образом, данный расчетно-экспериментальный метод оценки теплового состояния зоны КТС на стадии нагрева во время действия импульса сварочного тока при относительной простоте расчета, позволяет достаточно точно оценить температуру в любой точке зоны сварки в любой момент процесса формирования точечного сварного соединения. При этом зависимости, выражающие изменение температуры по координатам и времени, являются непрерывными аналитическими функциями и позволяют производить операции математического анализа.

3.4. Математические модели силового взаимодействия деталей
в площади свариваемого контакта при формировании соединения

Согласно принятым моделям термодеформационного равновесия процесса точечной сварки без обжатия (рис. 3.1) и с обжатием (рис. 3.3) периферийной зоны соединения силовое взаимодействие деталей, сжимаемых электродными устройствами, в площади контура уплотняющего пояска осуществляется металлом, который находится в твёрдой (до начала плавления во всей площади контура уплотняющего пояска) или в твёрдой (после начала плавления в площади уплотняющего пояска, окружающего ядро) и жидкой (в площади ядра расплавленного металла) фазах. Поэтому основными задачами математического моделирования взаимодействия деталей в площади свариваемого контакта при формировании соединения является определение напряжений в площадях контактов, в которых металл находится в твёрдой фазе, и давления в ядре.

3.4.1. Методика расчета среднего значения нормальных напряжении в контакте деталь - деталь

Точно рассчитать распределение напряжений в контактах при КТС по-видимому не представляется возможным из-за сложности и динамичности, протекающих в них термодеформационных процессов. Приближённое решение данной задачи [206, 217, 218] основано на допущении, что характер распределения напряжений в контакте деталь-деталь при точечной сварке подобен характеру распределения напряжений в контакте пуансон-деталь при осадке полосы. Это предположение сделано на основании анализа опубликованных работ С. И. Губкина, Е. П. Унксова, В. В. Соколовского и других исследователей, посвященных определению напряжений в контактах. Ими установлено, что в общем случае в площади контакта имеется три участка, которые отличаются распределением касательных напряжений (рис. 3.19). Качественно такой характер распределения нормальных напряжений в контактах электрод-деталь и деталь-деталь при точечной сварке подтверждается экспериментами по затеканию (пластической деформации) металла в узкую щель в электроде (рис. 3.20) и характером деформации периодического рельефа на поверхности детали (рис. 3.21).

Можно предположить, что и при сварке в площади контакта в момент времени t имеется три участка (рис 3.19 и 3.22), отличающихся распределением касательных напряжений ?, подобно осадке полосы [219]:

1) зона скольжения (участки a1b1 и b2a2) ;

2) зона торможения (участки b1c1 и c2b2) ;

3) зона застоя (участки c1о и оc2) ;

где ?Z -- напряжения, нормальные к плоскости свариваемого контакта;
? -- коэффициент трения; r -- радиальные координаты точек в плоскости поверхности деталей.

Наличие таких участков в контактах при КТС экспериментально подтверждается, например, в работе [129].

Решением приближенного уравнения равновесия, предложенного
Е. П. Унксовым [219, 220],

,

где s -- толщина детали; ?z, ?r, и ?? -- соответственно, нормальные относительно плоскости свариваемого контакта, радиальные и окружные напряжения; совместно с условием пластичности Губера - Мизеса

, (3.45)

где ?Д -- это сопротивление пластической деформации металла в области уплотняющего пояска; получены функции, описывающие изменение нормальных напряжений ?1Z, ?2Z, ?3Z на различных участках контакта, которые, применительно к условиям точечной сварки, имеют следующий вид:

- первый участок при rb ? r ? ra

; (3.46)

- второй участок при rc ? r ? rb

; (3.47)

- третий участок при 0 ? r ? rc

. (3.48)

Здесь ? - коэффициент трения; dП - диаметр контурной площади контакта (уплотняющего пояска).

Координату границы зоны торможения rb можно определить по зависимости, приведенной в работе [221], которая, применительно к условиям точечной сварки имеет вид

. (3.49)

Поскольку при КТС в контакте электрод-деталь и, в особенности, деталь-деталь наблюдается схватывание металла [128, 129], то коэффициент трения ? можно принять равным 0,5. Тогда, согласно (3.49) при ? = 0,5 -- координата , т. е. зона скольжения (участки a1b1 и a2b2) отсутствуют, а зона торможения (участки b1c1 и b2c2) доходит до границы контакта.

Расчеты показали, что, пренебрегая уменьшением касательных напряжений в зоне застоя (с1о и ос2 (см. рис. 3.19)), получаем абсолютную ошибку при определении средней величины нормальных напряжений ?СР, не превышающую 5...10 %, причем в свариваемом контакте только до начала плавления металла. Поэтому, чтобы упростить расчеты, можно допустить, что распределение касательных напряжений ? в области 0 ? r ? dП/2 равномерно и зона торможения распространяется до центра контакта, т. е. rС = 0.

Тогда по известной теореме о среднем, после подстановки в нее зависимости (3.47), среднее значение сжимающих нормальных напряжений в свариваемом контакте ?СРt в любой момент процесса формирования соединения t можно определить следующим образом

, (3.50)

где r1t и r2t - соответственно нижний и верхний пределы интегрирования.

При КТС нижний r1t и верхний r2t пределы интегрирования изменяются в течение процесса формирования соединения. До момента начала образования ядра контакт твердого металла осуществляется по всей площади уплотняющего пояска. Поэтому в этот период пределы интегрирования r1t = 0 и r2t = dПt /2 и интегрирование зависимости (3.47) следует проводить в интервале 0…dПt /2. При появлении ядра контакт твердого металла осуществляется по уплотняющему пояску шириной bПt = dПt /2 - dЯt/2. Следовательно, интегрирование зависимости (3.47) в этот период следует проводить в интервале dЯt /2…dПt /2. Поскольку до начала плавления металла dЯt = 0, то интервал интегрирования dЯt /2…dПt /2 может быть принят для любого момента КТС при 0 ? t ? tСВ. Тогда, после подстановки в (3.50) зависимостей (3.47) и (3.49) количественное значение ?СРt можно определить следующим интегральным выражением

,

из которого после вычисления интеграла с вышеуказанными переменными пределами интегрирования получаем формулу для приближенных количественных расчетов среднего значения нормальных напряжений ?СРt в контакте деталь-деталь в любой момент t процесса формирования соединения

. (3.51)

Здесь, для момента t процесса формирования соединения, ?Дt -- сопротивление деформации металла; dЯt и dПt -- текущие значения диаметров, соответственно, ядра и уплотняющего пояска; К? - коэффициент, характеризующий неравномерность распределения в площади контакта нормальных напряжений по координате r, который для условий КТС следует принимать в пределах 0,25...0,5.

Согласно выражению (3.47) напряжения ?2Z на краю контакта при во всех случаях стремятся к значениям сопротивления деформации металла , а в центре контакта при они растут с увеличением отношения диаметра контакта к толщине детали : . Это изменение неравномерности распределения напряжений по координате r, как следует из формулы (3.51), существенно влияет и на средние их значения ?СРt в площади контакта. Так, минимальные значения получаются при , в случае отсутствия ядра расплавленного металла, или же при уменьшении ширины уплотняющего пояска, т. е. разности после начала расплавления металла. Причем, это влияние увеличивается с уменьшением толщины свариваемых деталей вследствие увеличения отношения dПt /s.

Точность методики расчета ?СРt до начала плавления металла представляется возможным оценить прямыми измерениями, поскольку при этом условии ?СРt равно среднему давлению в контакте, которое можно определить делением усилия сжатия электродов FЭ на его площадь SК: . Например, свариваемые детали сжимали между электродами на экспериментальной установке, описанной в п. 2.1.2 (рис. 2.7), и измеряли при этом контурную площадь контакта по методике угольных пленок (рис. 2.3). Затем определяли экспериментальные значения ?СР и сравнивали их со значениями, рассчитанными по формуле (3.51). Пример такого сравнения для холодных контактов показан на рис. 3.23. Проведенные исследования показали удовлетворительную сходимость экспериментальных (показаны точками) и расчетных (кривая 1) значений напряжений в контактах.

Все, сказанное выше, не противоречит существующим представлениям о распределении нормальных напряжений в контактах.

3.4.2. Методика расчета давления расплавленного металла в ядре

Сведения о давлении расплавленного металла в ядре в литературе по сварке носят в основном предположительно-описательный характер. Это объясняется особенностями точечной сварки, не позволяющими измерить его экспериментально, и сложностью термодеформационных процессов в зоне сварки на стадии нагрева, которая затрудняет расчетное определение его величины.

Ниже изложена методика, разработанная [206, 218, 222] на основании приведенных исследований термодеформационных процессов, протекающих в зоне сварки на стадии нагрева, которая позволяет приближенно рассчитать давление расплавленного металла в ядре в любой момент процесса его формирования. Поставленная цель достигается тем, что реальный процесс пластической деформации металла, окружающего ядро, с определенными допущениями, в частности, об осесимметричности зоны сварки, сводится к решению задачи о деформировании сферической оболочки внутренним давлением Р (рис. 3.24).

Согласно решению данной задачи Ляме [223] компоненты напряжений в сферических полярных координатах определяются зависимостями:

,

,

где ?r, и ??, ?? -- радиальное и окружные напряжения; Р -- давление в полости, b0 -- наружный радиус сферы; а -- радиус полости.

Р. Хилл [224], применив условие пластичности Треска - Сен-Венана

, (3.52)

где ?Т -- предел текучести, распространил это решение на случай упругопластического деформирования внутренним давлением толстостенной сферической оболочки. Согласно этому решению распределение напряжений в толстостенной сферической оболочке при упругопластическом ее деформировании внутренним давлением Р (слева на рис. 3.24) описывается следующими зависимостями: в упругой области, при c ? r ? b0

, (3.53)

в пластической области, при а ? r < с

, (3.54)

где a -- радиус полости; b0 -- наружный радиус сферы; с -- радиус границы пластической области.

В упругой области оба компонента напряжения уменьшаются с увеличением координаты r. В области пластических деформаций с увеличением r радиальное напряжение уменьшается по величине, тогда как, по условию пластичности, окружное напряжение увеличивается. Максимальное значение окружного напряжения достигается на границе пластического и упругого состояний металла (радиус с). Аналогичный характер изменения напряжений по координате r получен при решении подобной задачи и в работе [225].

Экспериментально установлено (см. п. 2.5.2), что на стадии нагрева максимальные относительные пластические деформации свариваемых деталей по координате r, достигающие 15 %, локализованы в области контура сварочного контакта, диаметром dПt, и в узком поясе (шириной
? 0,05...0,15 dПt) вокруг него. Упругие же радиальные деформации свариваемых деталей вне этой зоны незначительны, и поэтому ими можно пренебречь. Тогда процесс деформации металла в зоне формирования соединения при контактной точечной сварке можно уподобить процессу деформации металла сферической оболочки с бесконечно толстыми стенками,
т. е. при b0 > ? (справа на рис 3.24).

Так как металл, выдавливаемый в зазор деталь-деталь, при несвободном расширении в площади уплотняющего пояска, шириной , преодолевает силу реакции противоположной детали, то можно предложить, что он находится в объемно-сжатом напряженном состоянии аналогично металлу зоны а -- д при деформации сферической оболочки. При сварке давление в ядре и напряжения в уплотняющем пояске стремятся раздвинуть свариваемые детали аналогично тому, как и давление в полости сферы и напряжения в зоне объемно-сжатого металла
а -- д при деформировании сферической оболочки. При деформировании сферической оболочки разъединению полусфер препятствует металл с растягивающими окружными ?? напряжениями при r > c, в процессе же сварки разъединению деталей препятствует усилие сжатия электродов FЭ. Поскольку ядро в плоскости свариваемых деталей имеет форму круга, в плоскости оси электродов -- эллипса, а пластические деформации металла локализованы в области уплотняющего пояска, то можно допустить, что характер напряженного состояния пластически деформируемого металла в приконтактной области уплотняющего пояска подобен характеру напряженного состояния металла в объемно-сжатой зоне а -- д при деформировании сферической оболочки с бесконечно толстой стенкой.

Поэтому процесс деформации металла в зоне сварки на стадии роста ядра можно приближенно уподобить процессу деформации при расширении сферической полости в оболочке с бесконечно толстыми стенками, если оболочку мысленно рассечь по диаметральной плоскости, и сумму растягивающих окружных напряжений ??, при r > д заменить усилием сжатия электродов, т. е. принять, что:

. (3.55)

Таким образом, определить давление Р в ядре можно, решая задачу только в пластической области, так как упругие деформации влияния на его величину практически не оказывают. При этом контуром уплотняющего пояска можно считать границу металла при деформировании сферической оболочки, находящегося в объемно-сжатом состоянии.

Тогда изменение напряжений по координате r в пластической области (а ? r < с) при b0 > ?, согласно зависимостям (3.54) можно описать следующим образом:

. (3.56)

Более точные результаты, по мнению ряда исследователей [220, 225], получаются при использовании условия пластичности не Треска - Сен-Венана (3.52), а Губера - Мизеса (3.45).

При высоких скоростях деформации и высокой температуре деформируемого металла, что имеет место при точечной сварке, «деформируемость» металла точнее характеризуется не пределом текучести ?Т, а сопротивлением пластической деформации ?Д металла с учетом процессов его упрочнения и разупрочнения [226]. Поэтому для условий пластической деформации металла при точечной сварке предел текучести ?Т в условии пластичности (3.45) рационально заменить сопротивлением пластической деформации ?Д . Тогда давление в полости сферической оболочки, которое равно радиальному напряжению металла на поверхности полости, но с обратным знаком, необходимое для осуществления пластического течения металла до радиуса с, по зависимости (3.56) можно рассчитать следующим образом:

. (3.57)

Координату пластической области с можно выразить через координату д границы объемно-сжатого металла из зависимостей (3.56), так как при r = д окружные напряжения ?? = 0. После преобразований получаем следующее соотношение с и д:

. (3.58)

Согласно принятой модели можно записать следующее соотношение координат элементов сферической оболочки и зоны сварки: д = dПt /2, а
а = dЯt /2. Причем, значение координаты области пластических деформаций, выраженной зависимостью (3.58), практически совпадает с координатой, полученной при экспериментальных исследованиях пластических деформаций металла в зоне формирования соединения при КТС (см. п. 2.5.2).

С учетом сказанного выше зависимость (3.57) для расчета давления расплавленного металла в ядре РЯt в любой момент времени t процесса формирования соединений при КТС можно преобразовать к следующему окончательному виду:

, (3.59)

где для момента времени t, РЯt - давление расплавленного металла в ядре; ?Дt -сопротивление пластической деформации металла в области уплотняющего пояска; dЯt и dПt - диаметры, соответственно, ядра и уплотняющего пояска.

Из формулы (3.59) следует, что давление расплавленного металла в ядре прямо пропорционально сопротивлению пластической деформации металла и логарифму отношения диаметра уплотняющего пояска к диаметру ядра. Поэтому давление расплавленного металла в ядре в процессе его формирования может только уменьшаться, поскольку всегда уменьшается как сопротивление деформации металла ?Дt, так и отношение dПt/dЯt. Очевидно, что при при уменьшении ширины уплотняющего пояска, то есть разности , давление в ядре, как средние значения напряжений ?СРt, стремятся к минимальному значению: .

Проверить точность расчетной методики прямым измерением давления расплавленного металла в ядре пока не представляется возможным. Поэтому экспериментальную оценку точности зависимостей для расчета давления в ядре РЯt (3.59) и средних значений нормальных напряжений ?СРt (3.51) производили косвенно. Такую экспериментальную оценку, пример которой показан на рис. 3.25, осуществляли следующим образом.


Подобные документы

  • Особенности контактной точечной сварки, ее достоинства и недостатки, основные параметры. Изменение параметров во времени. Схема шунтирования тока через ранее сваренную точку. Режимы точечной сварки низкоуглеродистых сталей. Подготовка деталей к сварке.

    реферат [730,5 K], добавлен 22.04.2015

  • Основные виды контактной сварки. Конструктивные элементы машин для контактной сварки. Классификация и обозначение контактных машин, предназначенных для сварки деталей. Система охлаждения многоэлектродных машин. Расчет режима точечной сварки стали 09Г2С.

    контрольная работа [1,1 M], добавлен 05.09.2012

  • Технологичность сварной конструкции. Оценка свариваемости металла. Расчёт параметров контура контактной машины. Технология сборки и сварки. Сварочные напряжения и деформации, меры борьбы с ними. Методы контроля качества. Планировка рабочего места.

    курсовая работа [8,1 M], добавлен 24.11.2013

  • Принцип контактной электрической сварки. Основные виды электрической контактной сварки: стыковая сопротивлением и точечная; последовательность операций. Технология электрической контактной сварки и подготовка заготовок. Получение стыкового соединения.

    контрольная работа [499,4 K], добавлен 25.11.2012

  • Понятие и характеристики стыковой сварки. Несплошности зоны точечной сварки; природа их образования и меры предупреждения. Основные правила выбора режима сварки: геометрических параметров электродов, время, силы сварочного тока и усилие сжатия.

    курсовая работа [766,1 K], добавлен 26.01.2014

  • Определение геометрических размеров сварных точек и шаг точек. Расчет тепловых затрат. Режим точечной сварки для низкоуглеродистой стали. Выбор формы рабочей части нижнего и фигурного электродов. Величина давления при стыковой сварке оплавлением.

    контрольная работа [501,9 K], добавлен 12.03.2015

  • Сущность и классификация методов контактной сварки по форме сварного соединения, роду сварочного тока и характеру протекания производственного процесса. Оценка преимуществ и недостатков контактной сварки, используемое в ней оборудование и материалы.

    презентация [1,0 M], добавлен 04.07.2014

  • Изучение процесса получения неразъемного соединения конструкции прокладки форсунки с помощью точечной контактной сварки. Обоснование выбора материала изделия. Оценка свариваемости материала. Расчет температурных полей от движущихся источников тепла.

    курсовая работа [325,6 K], добавлен 25.04.2015

  • Условия эксплуатации ручки к кастрюле. Технология контактной сварки. Оценка свариваемости материала конструкции. Выбор типа соединения, вида и способа сварки. Подготовка поверхности деталей. Расчет режима сварки, электродов и силового трансформатора.

    курсовая работа [585,5 K], добавлен 15.02.2013

  • Классификация электрической сварки плавлением в зависимости от степени механизации процесса сварки, рода тока, полярности, свойств электрода, вида защиты зоны сварки от атмосферного воздуха. Особенности дуговой сварки под флюсом и в среде защитных газов.

    презентация [524,2 K], добавлен 09.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.