Математическое моделирование процессов идеального смешения и регулирования уровня NaOH в резервуаре

Три взаимосвязанных этапа математического моделирования. Краткое описание технологического процесса разбавления щелочи NaOH водой до требуемой концентрации. Уравнение материального баланса для модели идеального смешивания. Представление модели в MatLab.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 14.10.2012
Размер файла 472,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Одной из основных задач химической технологии является создание новых высокоэффективных процессов и совершенствование уже действующих. Ее решение возможно только с помощью разработки и использования систем автоматического проектирования и оптимизации химико-технологических процессов. Развитие систем автоматизированного проектирования обусловлено широким внедрением вычислительной техники и прикладного математического обеспечения. В основе таких систем лежит метод математического моделирования - изучение свойств объекта на математической модели.

Целью математического моделирования является определение оптимальных условий протекания процесса, управление им на основе математической модели и перенос результатов на объект.

Математической моделью называется приближенное описание какого-либо явления или процесса, выраженное с помощью математической символики.

Математическое моделирование включает три взаимосвязанных этапа:

составление математического описания изучаемого объекта;

выбор метода решения системы уравнений математического описания и реализация его в форме моделирующей программы; установление соответствия (адекватности) модели объекту.

На этапе составления математического описания предварительно выделяют основные явления и элементы в объекте и затем устанавливают связи между ними. Далее, для каждого выделенного элемента и явления записывают уравнение (или систему уравнений), отражающее его функционирование. Кроме того, в математическое описание включают уравнения связи между различными выделенными явлениями. В зависимости от процесса математическое описание может быть представлено в виде системы алгебраических, дифференциальных, интегральных уравнений.

Этап выбора метода решения и разработки моделирующей программы подразумевает выбор наиболее эффективного метода решения из имеющихся (под эффективностью имеются в виду быстрота получения и точность решения) и реализацию его сначала в форме алгоритма решения, а затем - в форме программы, пригодной для расчета на ЭВМ. Построенная на основе физических представлений модель должна верно качественно и количественно описывать свойства моделируемого процесса, т.е. она должна быть адекватна моделируемому процессу. Для проверки адекватности математической модели реальному процессу нужно сравнить результаты измерений на объекте в ходе процесса с результатами предсказания модели.

1. Краткое описание технологического процесса

В данном технологическом процессе производится разбавление щелочи HaOH водой до требуемой концентрации. Затем разбавленная щелочь нагревается до необходимой температуры. Данный технологический процесс является небольшим фрагментом производства гипохлорита натрия, который в дальнейшем применяется для отбеливания целлюлозы.

Схема технологического процесса имеет следующий вид:

Данный технологический процесс можно разбить на две модели систем автоматического регулирования:

Модель системы автоматического регулирования уровня NaOH в баке №1.

Модель смесителя №2 (модель идеального перемешивания).

Модель идеального смешения

Опишем аппарат идеального смешения. Представим себе аппарат с мешалкой, через который проходит поток (рисунок 1). Мощность мешалки такова, что поступающая жидкость мгновенно перемешивается с массой, уже находящейся в аппарате. Таким образом, все, что попадает в аппарат идеального смешения, мгновенно распределяется по всему его объему.

Перечислим важнейшие следствия из этого определения: 1. Концентрации всех веществ равномерно распределены по объему аппарата. В любой паре точек в аппарате любая из этих величин имеет одно и то же значение.

На выход поток выносит ту жидкость, которая находится в аппарате. Поэтому на выходе из аппарата идеального смешения концентрация та же, что в объеме.

На входе в аппарат концентрация претерпевает скачок: исходные значения параметров потока, мгновенно смешивающегося с содержимым аппарата, соответственно мгновенно изменяются до тех значений, которые характеризуют режим в аппарате и на выходе из него.

Время пребывания жидкости в аппарате идеального смешения распределено неравномерно. Действительно, распределяя по объему вошедшую порцию жидкости, наша идеальная мешалка пошлет к выходу некоторые частицы из этой порции и они сразу уйдут из аппарата, в то время, как другие, попавшие в иные части аппарата, могут задерживаться в нем весьма надолго.

Используя то обстоятельство, что концентрация во всех точках аппарата одинакова, можно очень просто записать обобщенное уравнение материального баланса:

2. Приход вещества - расход вещества = накопление вещества

Таким образом, уравнение материального баланса для нашей модели идеального смешивания будет иметь следующий вид:

(1.1)

где Q1 и Q2 - расход смешиваемой (в нашем случае NaOH) и смешивающей (H2O) жидкостей соответственно. C1 и С2 - концентрация смешиваемой и смешивающей жидкостей соответственно. Q и C - расход и концентрация смешанной (вышедшей из аппарата) жидкости.

Перепишем уравнение (1.1) в следующий вид:

(1.2)

Уравнение (1.2) почленно поделим на Q, тогда получим:

(1.3)

В уравнении (1.3) и , где Т - постоянная времени нашего объекта, а k - коэффициент усиления.

Подставив Т и k в уравнение (1.3) получим уравнение следующего вида:

(1.4)

Теперь уравнение (1.4) поделим почленно на постоянную времени Т, в результате чего получим:

(1.5)

Полученное уравнение (1.5) и будет описывать нашу модель идеального смешения. В соответствии с ним реализуем модель аппарата идеального смешения в пакете Simulink среды MatLab 6.5. При моделировании необходимо учесть, что величины Q1 и С1 (расход и концентрация NaOH) являются постоянными. Прежде чем моделировать необходимо ввести исходные данные для моделирования.

Таблица 1.1 - Исходные данные для моделирования аппарата идеального смешения.

С1(NaOH), %

Q1(NaOH), м3/сек.

C2(HOH), %

Q2(HOH), м3/сек.

V(смесителя), м3

56,65

0,0006

10

0,0001

0,000785

В MatLab-е представим нашу модель в следующем виде:

Рисунок 3 - Схема модели идеального смешения в среде MatLab.

Схема состоит из трех основных подсистем: объекта регулирования (Object-mixer), регулятора (ReguLator) и регулирующего органа (R.O.).

В объекте регулирования реализуется дифференциальное уравнение (1.5) посредством блоков суммирования, деления, умножения и интегрирования:

Рисунок 4 - Схема подсистемы (Object-mixer)

С помощью подсистемы, реализирующей регулятор, на вход которого поступает сигнал рассогласования (Delta) с элемента сравнения (EL.Sravneniya) осуществляется формирование управляющего сигнала (U) в диапазоне от 0 до 10 В на регулирующий орган (R.O.). Регулирующий орган, в свою очередь, формирует сигнал (Х), который управляет ходом штока.

Рисунок 5 - Схема подсистемы регулятора (ReguLator).

Звено Saturation в подсистеме регулятора служит для того, чтобы сигнал со звена PID ни в коем случае не мог превысить 0ч10 В (0ч10 В - стандартный выход для электрического регулятора).

Рисунок 6 - Схема подсистемы регулирующего органа (R.O.)

Звено S.U. в схеме R.O. необходимо для того, чтобы согласовать управляющий сигнал с регулятора в управляющий сигнал для двигателя, т.е. S.U. в данном случае выполняет роль усилителя.

На выходе электродвигателя (EL.Dvigatel) частота вращения вала, пропорциональная напряжению на входе (US.U.= 0ч380 В).

В результате реализации схемы получился график следующего вида:

Рисунок 7 - График процесса регулирования процесса идеального смешения.

3. Модель системы автоматического регулирования уровня NaOH в баке

В данной модели бака необходимо поддерживать постоянный уровень для того, чтобы расход поступающего в смеситель NaOH был постоянный, что, в свою, очередь требуется для того, чтобы можно было разбавлять NaOH водой в смесителе. Т.е. концентрация NaOH регулируется расходом воды, поступающей в смеситель.

Для того, чтобы смоделировать наш бак, необходимо ввести исходные данные и математически описать резервуар.

математический моделирование разбавление щелочь

где Q - расход (пр - приток, от. - отток) м - коэффициент истечения крана f - поперечное сечение трубы Х - управляющее воздействие

Исходные данные:

Вещество - NaOH

Удельный вес NaOH г = 10388 Н/м3

Диаметр бака - 2 м.

Высота бака - 4,5 м.

Диаметр подходящей трубы d1=0.09 м

Диаметр отходящей трубы d2 = 0.1 м

Коэффициент истечения крана на входе м1=0,3

Коэффициент истечения крана на выходе м2=0,2

Давление на входе в бак Р1= 65900 кПа

Давление на выходе в бак Р2= 6500 кПа

Уравнение материального баланса для нашей модели будет иметь вид:

Qпр=Qот (2.1)

Перепишем уравнение баланса в следующем виде:

, (2.2)

где Нн - уровень жидкости в рассматриваемом баке

Определим численные значения уравнения (2.2):

(2.3)

Подставим численные значения в уравнение (2.2) и определим величину НН:

(2.4)

Из уравнения (2.4) определим величину НН, реализовав уравнение (2.4) в MatLab-е:

Расход жидкости Qот при НН= 4,0346431 м:

(2.5)

Вычислим высоту столба жидкости над дном бака ZH, которая будет равна разности между значением НН и высотой столба жидкости НР2, эквивалентного давлению напора Р2Н на линии:

(2.6)

(2.7)

Площадь поперечного сечения бака:

(2.8)

Зная площадь бака, можно найти объем жидкости в баке:

(2.9)

Постоянная времени Та:

(2.10)

Определим коэффициенты самовыравнивания на притоке и оттоке, для чего перепишем уравнения для притока и оттока следующим образом:

(2.11)

Коэффициенты самовыравнивания будут равны:

(2.12)

Соответственно коэффициент самовыравнивания объекта равен:

(2.13)

Передаточная функция нашего объекта будет иметь вид:

(2.14)

где - коэффициент усиления, а - постоянная времени объекта. Подставим значения К и Т в уравнение (2.14):

(2.15)

Выражение (2.15) и будет являться передаточной функцией бака.

Реализуем нашу модель в среде MatLab. Она будет выглядеть следующим образом:

Рисунок 9 - Модель резервуара

Модель резервуара состоит из четырех подсистем (блока формирования возмущений, функции умножения, регулятора и регулирующего органа) и непосредственно передаточной функции объекта (резервуара с NaOH). Ниже приведены схемы подсистем.

Рисунок 10 - Подсистема блока формирования возмущений.

Рисунок 11 - Подсистема - функция умножения.

Рисунок 12 - Подсистема регулятора.

Рисунок 13 - Подсистема регулирующего органа.

В результате получился следующий график процесса регулирования:

Рисунок 14 - Процесс регулирования бака с NaOH.

Заключение

В данном курсовом проекте были рассмотрены и смоделированы с помощью пакета визуального программирования SIMULINK (пакет Matlab 6.5) следующие модели систем регулирования объектов химической технологии: модель идеального смешения, модель регулирования уровня NaOH в резервуаре.

Представлены графики зависимости регулируемых величин в зависимости от времени.

Список используемой литературы

1. Луценко В.А., Финякин Л.Н. Аналоговые вычислительные машины в химии и химической технологии. - М.: Химия, 1979 - 248 с.

2. Машины и аппараты химических производств. Под ред. И.И. Чернобыльского. - М.: Машиностроение, 1974. - 456 с.

3. Закгейм А.Ю. Введение в моделирование химико-технологических процессов. - 2 - е изд., перераб. и доп. - М.: Химия, 1982. - (серия «Химическая кибернетика») 288 с., ил.

4. Лурье Ю.Ю Справочник по аналитической химии. 5-е изд., перераб. и доп. - М.: Химия. 1979. - 480

Размещено на Allbest.ru


Подобные документы

  • Области применения математического моделирования. Открытая проточная емкость с вентилями на входе и выходе: физическое описание, уравнение баланса. Двухъячеечный рециркуляционный бак с обратным потоком. Модель смесительного бака идеального перемешивания.

    курсовая работа [1,3 M], добавлен 14.10.2012

  • Модель идеального смешения вещества. Изменение дифференциального уравнения с помощью преобразования Лапласа. Моделирование процесса управления смесителем. Балансовое уравнение автоматического управления емкостью. Расчет коэффициентов самовыравнивания.

    курсовая работа [172,6 K], добавлен 14.10.2012

  • Использование математических моделей объектов регулирования для анализа их свойств. Статическая характеристика напорного бака. Получение передаточных функций по заданным динамическим каналам объекта. Математическое описание модели теплообменника смешения.

    курсовая работа [1,1 M], добавлен 10.04.2011

  • Разработка математической модели системы автоматического регулирования уровня жидкости в резервуаре. Определение типа и рациональных значений параметров настройки регулятора. Содержательное описание регулятора, датчика уровня и исполнительного устройства.

    курсовая работа [2,7 M], добавлен 10.11.2015

  • Краткое описание технологического процесса. Описание схемы автоматизации с обоснованием выбора приборов и технических средств. Сводная спецификация на выбранные приборы. Системы регулирования отдельных технологических параметров и процессов.

    реферат [309,8 K], добавлен 09.02.2005

  • Технологии пищевых производств и разработка систем автоматизации химических процессов. Математическая модель материалов и аппаратов, применяемых для смешивания. Описание функциональной схемы регулирования количества подаваемых на смеситель компонентов.

    курсовая работа [26,8 K], добавлен 12.07.2010

  • Понятие модели системы. Принцип системности моделирования. Основные этапы моделирования производственных систем. Аксиомы в теории модели. Особенности моделирования частей систем. Требования умения работать в системе. Процесс и структура системы.

    презентация [1,6 M], добавлен 17.05.2017

  • Описание технологического процесса и принцип работы системы регулирования. Составление и описание функциональной структуры САР. Свойства объекта регулирования по каналам управления и возмущения по его математической модели в виде передаточной функции.

    курсовая работа [1,3 M], добавлен 17.07.2012

  • Краткое описание технологического процесса закалки рельса, кинематическая схема закалочной машины и ее описание. Разработка автоматизированного электропривода барабана для закалочной машины, его компьютерное моделирование и создание математической модели.

    курсовая работа [5,8 M], добавлен 02.02.2011

  • Промышленные способы получения глинозема. Основы способа Байера. Взаимодействие органических веществ с растворами NaOH. Материальный баланс производства глинозема из бокситов. Расчет состава и количества оборотного раствора. Методы каустификации соды.

    курсовая работа [357,9 K], добавлен 22.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.