Производство полипропилена 01030
Сведения об ОАО "Уфаоргсинтез". Приоритетные направления деятельности общества, характеристика его деятельности за отчетный год. Сведения о финансовом состоянии предприятия, динамика дивидендных выплат. Технология производства полипропилена 01030.
Рубрика | Производство и технологии |
Вид | отчет по практике |
Язык | русский |
Дата добавления | 13.12.2009 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Металлорганические соединения: Al (C2H5)3, А1(С3Н7)3-Аl(С16Н33)3, алюминиевые сплавы (например, Mg3Al2) и т. п.
Детальное изучение различных каталитических систем позволило выявить новые типы катализаторов, однако принцип их действия тот же и заключается во взаимодействии металлов органических соединений I, II или III групп периодической системы с соединениями переходных металлов IV--VIII групп. В этой связи представляется интересным вспомнить метилтрихлортитан (СН3ТiС13), являющийся, по мнению некоторых исследователей, эффективным катализатором. Однако более глубокое исследование указывает на то, что сначала происходит его разложение на треххлористый титан
RTiCl3 --> TiCl3 + R. (1)
и катализатором служит, следовательно, система ТiС1з+RТiС1з.
Изотактический полипропилен в настоящее время получают только на гетерогенных каталитических системах, в которых переходные металлы находятся в нерастворимой, более или менее кристаллической форме, а металлорганическое соединение растворимо в углеводородной среде. Ниже приводится краткое описание получения металлорганических соединений алюминия, триэтилалюминия и диэтилалюминий хлорида, а также треххлористого титана, представляющих собой наиболее широко распространенные и технологически наиболее хорошо разработанные системы катализаторов.
Получение алюминийорганических соединений
Алкилпроизводные алюминия, применяемые в качестве катализаторов стереоспецифической полимеризации пропилена, представляют собой бесцветные, на воздухе самовоспламеняющиеся жидкости; с водой и веществами, содержащими подвижный атом водорода (спирты, органические кислоты и т. п.), реагируют в концентрированном состоянии со взрывом. При незначительном доступе воздуха и влаги окисляются до соответствующих алкоксипроизводных или гидролизуются до гидроокиси алюминия. С другими донорными соединениями (такими, как простые эфиры, амины, сульфиды) они образуют раз-личные устойчивые комплексы, которые значительно меняют каталитическую активность. Высшие гомологи, начиная с триизобутилалюминия, отличаются уже меньшей реакционной способностью, но и они на воздухе неустойчивы, поэтому работать с ними необходимо в атмосфере инертных газов (азот, гелий, аргон и т. п.; двуокись углерода не является инертным газом).
Триэтилалюминий. Температура кипения 194° С при 760 мм рт. ст. (с частичным разложением) и 63° С при 1 мм рт. ст., плотность 0,84 г/см3, показатель преломления n20d=1,480, с углеводородами смешивается в любых соотношениях. При нормальной температуре примерно на 90% ассоциируется с образованием димера:
Алюминийорганические соединения могут быть получены по общему для металлорганических соединений методу, который заключается в обмене алкилов между диалкилпроизводными ртути и алюминием :
Реакция протекает с избытком алюминия при 100--120° С практически количественно. Для крупного производства, однако, этот метод не годится из-за трудности получения исходных алкилпроизводных ртути, с одной стороны, и их высокой токсичности, с другой.
Циглер модифицировал этот метод, предложив заменить натрий гидридом натрия :
В результате реакции, которую можно осуществлять в углеводородной среде (например, в гексане или циклогексане), получается раствор диэтилалюминий гидрида. Этот раствор затем непосредственно переводится в триэтилалюминий действием этилена при 70--80° С и повышенном давлении:
Данная реакция составляет сущность так называемого прямого синтеза триэтилалюминия , уравнение которого можно записать в виде:
При проведении реакции возникают известные трудности; особенно сложно приготовить алюминий в тонкоизмельченной активной форме без поверхностных оксидных пленок. Измельчение можно проводить на вибрационных мельницах в среде =50% раствора триэтилалюминия. Полученная суспензия активного алюминия затем вступает в реакцию с водородом в автоклаве при 10-120° С, давлении водорода 20--30 ат и в присутствии в качестве катализатора пористого титана:
На следующей стадии проводится реакция (7), и весь цикл повторяется сначала.
Хотя в настоящее время в промышленности применяются оба посмотренных метода синтеза триэтилалюминия, прямой синтез в будущем непременно получит преимущественное развитие, так как в этом случае практически отсутствуют трудно утилизируемые отходы производства .
Диэтилалюминий хлорид можно с успехом применять вместо триэтилалюминия в каталитических системах с ? , ? , ?-модификациями треххлористого титана. Физические свойства диэтилалюминийхлорида: температура кипения при 760 мм рт. ст. 208° С, при 0,9 мм рт. ст. 44° С; плотность 0,9736 г/мл; температура плавления --74° С; вязкость 1,45 спз при 23° С. С алифатическими и ароматическими углеводородами смешивается в любом соотношении. Степень ассоциации до мостиковой димерной структуры выше, чем у триэтилалюминия и этилалюминий хлорида.
В производстве диэтилалюминий хлорид получают из этилалюминийсескви хлорида, однако вместо ре-акции с NaСl применяется частичное дегалогенирование металлическим натрием по схеме:
Влияние условий проведения реакции на процесс полимеризации .
Основные параметры процесса полимеризации, а именно общая скорость процесса, стереоизомерный состав полимера и его молекулярный вес, зависят от химической и физической природы катализатора, полимеризационной среды и физических условий, а также степени чистоты отдельных компонентов системы и их концентрации.
Линейный полиэтилен на таких катализаторах может образовываться как в гомогенной, так и в гетерогенной фазе, поскольку он не имеет пространственных изомеров. Для получения же изотактического полипропилена предпочитают применять твердые хлориды титана (прежде всего TiCl3) в сочетании с алюминийорганическим компонентом. О роли твердой фазы говорит тот факт, что в присутствии каталитического комплекса металлорганического соединения с переходным металлом, адсорбированного на аморфном носителе, при полимеризации пропилена образуется атактический аморфный продукт. Тот же комплекс, адсорбированный на кристаллическом носителе (треххлористый титан), позволяет получить изотактический полимер. Следует отметить, что самой по себе регулярности решетки носителя еще недостаточно для того, чтобы катализатор приобрел высокую стереоспецифичность; носитель должен также удовлетворять определенным стерическим условиям, связанным с величиной его ионов и расстоянием между ними. Так, в присутствии трехбромистого или трехиодистого титана атактического полимера образуется больше, чем при применении треххлористого титана.
Льюисовский характер обоих каталитических компонентов предопределяет и выбор среды. Наиболее выгодной средой считаются инертные углеводороды. Поскольку треххлористый титан действует как сильный адсорбент, наиболее предпочтительны алифатические углеводороды (гептан, гексан, пропан и т. п.), которые сорбируются в меньшей степени, чем ароматические.
4.6 Влияния на свойства полипропилена
4.6.1 Влияние концентрации мономера и компонентов катализатора
Из приведенных данных по механизму стереоспецифической полимеризации следует, что активные центры образуются при сорбировании алюминийорганического компонента на поверхности твердой фазы. Поэтому в первую очередь именно этот компонент будет оказывать влияние на скорость образования полимера и его стереорегулярность.
Наибольший выход изотактического полипропилена получается при использовании треххлористого титана с малой удельной поверхностью и хорошо развитыми кристаллами. Однако на таком катализаторе полимеризация протекает медленно. При увеличении удельной поверхности применяемого катализатора одновременно со скоростью реакции возрастает содержание атактической фракции и стереоблоков в полимере, что связано, очевидно, с увеличением дефектов в твердой фазе.
Очевидно, что на изломах и гранях кристаллов мономерные звенья могут присоединяться к растущей цепи из разных положений, вследствие чего образуются аморфные полимеры или при более специфических условиях в большей или меньшей степени регулярные стереоблоки (стереоизомерный сополимер). Чем мельче частицы твердой фазы, тем больше изломов относительно плоскостей, отличных от обычной плоскости 001 (обозначения индексами Миллера), и, как результат, часть поверхности имеет иные геометрические и химические свойства.
Алкилбериллий, содержащий металл с наименьшим ионным радиусом, в присутствии треххлористого титана дает самый высокий выход изотактического полипропилена при больших скоростях реакции полимеризации. На степень изотактичности и скорость реакции оказывают влияние также стерические и химические свойства заместителей металлорганического соединения. При полимеризации пропилена в присутствии триметилалюминия образуется полимер с большим содержанием атактической фракции, чем при применении триэтилалюминия. Стереоспецифичностъ, однако, падает и при высших алкилах. Если один алкил алюминия заменить на галоген, то скорость реакции снижается в ряду F>Cl>Br>I; в том же порядке увеличивается молекулярный вес. Натта в результате проведенных опытов по полимеризации пропилена с треххлористым титаном в среде толуола пришел к заключению, что стереорегулярность падает в ряду
Аl(С2Н5)2I > Аl(С2Н5)2Вr > Al(С2Н5)2С1 > Аl(С2Н5)2
Алюминий дигалогениды в присутствии треххлористого титана полимеризации уже не инициируют; при введении же в систему соответствующего донора (амины, пиридин) можно получить полимер с высокой стереорегулярностью. Донор и металлорганическое соединение лучше всего брать в соотношении 1 :2.
4.6.2 Влияние температуры
Суммарная энергия активации полимеризации пропилена на каталитической системе треххлористый титан -- триэтилалюминий равна 14 ккал/моль, причем 4 ккал/моль приходится на долю теплоты растворения мономера в н - гептане.
В отличие от константы скорости молекулярный вес и стереоизомерный состав полимера, полученного на системе треххлористый титан--триэтилалюминий, при температурах ниже 80° С изменяются относительно мало. Повышение температуры, способствующее уменьшению молекулярного веса, вызывает также и заметное изменение содержания экстрагируемых фракций. Полимеры, синтезированные при 100° С, содержали лишь 3% аморфной фракции. На катализаторе Т1С13-А1(С3Н5)2I и других известных каталитических системах полимеризация проходит с более низкой скоростью, чем в присутствии TiCl3 - AIR3 или TiCI3 - BeR3.
4.7 Регулирование свойств продукта
Полученный в результате стереоспецифической полимеризации продукт наряду с изотактическим полимером содержит также некоторое количество атактической фракции и так называемые стереоблокполимеры, в макромолекулах которых чередуются на противоположных сторонах цепи не отдельные группы СНз, а целые изотактические участки этих групп. Катализатор находится в массе образовавшегося полимера, и поэтому его необходимо либо удалить, либо перевести в химически инертную форму, не вызывающую деструкции и нежелательного окрашивания полимера. Содержание аморфных и стереоблочных фракций оказывает влияние на способность полимера к переработке и свойства получаемых изделий и должно быть отрегулировано в соответствии с назначением полимера. Другим параметром, который необходимо варьировать в широких пределах в зависимости от назначения полимера, является величина молекулярного веса.
4.8 Схема производства полипропилена фирмы Монтекатини
В полимеризационный автоклав 4 , снабженный охлаждающей рубашкой , в один прием загружают оба компонента катализатора и мономер. Полимеризацию ведут при температуре =80° С и давлении до 30 ат в определенном количестве растворителя (гептана). Как только скорость полимеризации падает (вследствие конверсии мономера) ниже некоторого предела, часть реакционной массы (30--50% объема автоклава) переводят в аппарат для дегазации 5. В автоклав 4 из аппарата 1 подают нужное количество дисперсии катализатора в гептане, а также свежий мономер с таким расчетом, чтобы уровень жидкости в автоклаве был таким же, как вначале. При крупнотоннажном производстве параллельно устанавливают 6--10 полимеризационных автоклавов, рабочие циклы (загрузка и разгрузка) которых соответствующим образом смещены друг относительно друга. Все операции на данной стадии процесса выполняются автоматически по заданной программе. На следующей стадии полимер отделяют от растворителя и содержащихся в нем атактических фракций. Затем производят экстракцию остатков катализатора спиртами, а также промывку или отпарку полимера. После сушки порошковый полипропилен подвергают грануляции на двухчервячной экструзионной машине с вакуумотсосом.
4.9 Области применения ПП
Для производства готовой продукции из полипропилена существует в России используются пять основных метода переработки: экструзия (пленки, листы, трубы, нити и волокна), литье под давлением (ТНП, тара, медицинские изделия, автокомплектующие и аккумуляторные батареи, фитинги), выдув (пленки, емкости), ротоформование (емкости, крупные пластиковые изделия) и вспенивание (изоляционные материалы) (таблица 1.2). Продукция получаемая первыми двумя методами является преобладающей.
Для переработки методом экструзии преимущественно используются марки с показателем текучести расплава (ПТР) 3 г/10 мин (марки Толен 21030, Бален 01030, Каплен, 01030). Для производства листов используется полипропилен с более низким ПТР - 1,2-2,5 г/10 мин. Для производства нити и волокна в зависимости от нужной толщины используют как марки с низким ПТР, так и с самым высоким - 25,0-27,0 г/10 мин. Трубы внутренней изоляции производятся из гомополимеров с низким ПТР, а трубы для горячего и холодного водоснабжения из статсополимеров так же с низким ПТР.
Литьевая продукция преимущественно производится из полипропилена с ПТР находящимся в диапазоне 6-15 г/10 мин. В производстве продукции методом ротоформования (в России продукцию этим методом производят преимущественно из полиэтилена) используется полипропилена с ПТР ниже 3г/10 мин.
Обозначение российских марок ПП состоит из пяти цифр: первая цифра 2 или 0 указывает на давление, при котором происходит процесс синтеза, соответственно, низкое или среднее. Вторая цифра указывает на вид материала: 1 - гомополимер, 2 - блоксополимер, 3 - статсополимер. Три последующие цифры обозначают десятикратное значения показателя текучести расплава (ПТР) . В обозначении композиции через тире указывают номер рецептуры стабилизации и далее, через запятую, цвет и число рецептуры окрашивания.
В обозначение украинских марок ПП первая буква обозначает вид материала (А -гомополимер, P - блоксополимеры, Х - статсополимер), следующая цифра характеризует ПТР, через тире указывается номер рецептуры стабилизации, рекомендуемая область применения и специальные свойства.
4.10 Области применения ПП:
Экструзия |
||
Неориентированные поливные пленки (CPP films) |
Упаковка текстиля, санитарно-гигиенической, кожгалантерейной и канцелярской продукции, упаковка продуктов питания |
|
Одноосноориентированные пленки |
Получение волокон |
|
Двухосноориентированные плени (BOPP films) |
Упаковка пищевых и непищевых продуктов, изготовление клейкой ленты, пленочных этикеток, конденсаторов |
|
Жесткие пленки |
Одноразовая посуда, упаковка молочных продуктов, контейнеры |
|
Листы |
Гидроизоляция, строительство, рекламные щиты, канцелярия |
|
Трубы |
Внутренняя канализация, горячее водоснабжение, для электросетей, холодное водоснабжение |
|
Нити и волокна |
Тканые и нетканые материалы, мешки, биг-беги, шпагат, крученые изделий из нитей |
|
Литье под давлением |
||
Товары народного потребления |
Изделия для цветоводства, изделия для ванной комнаты, изделия для кухни, предметы домашнего обихода, детские товары, садово-огородный инвентарь |
|
Тарные ведра |
Тарные ведра для лакокрасочной промышленности, шпаклевок и мастик, майонеза и мороженного и т.д. |
|
Ящики |
Тарные ящики |
|
Паллеты |
Транспортные паллеты |
|
Автокомлектующие |
Около 400 наименований изделий для автомобиля |
|
Аккумуляторные батареи |
Аккумуляторные батареи |
|
Мебель |
Пластиковая мебель для мест общественного питания, сада и огорода, домашнего хозяйства |
|
Медицинские изделия |
Одноразовые шприцы и другие расходные материалы для медицинской промышленности |
|
Фитинги |
Трубопроводная арматура и сантехнические изделия |
|
Укупорочные изделия |
Двухсоставные и односоставные крышки для ПЭТ бутылок, укупорочные изделия для парфюмерии, косметики, бытовой химии, автохими |
|
Выдув |
||
Пленки |
Фасовочный пакет, пакет "майка", пакет с вырубной ручкой, мусорные пакеты |
|
Емкости |
Флаконы для косметики, парфюмерии, бытовой химии, канистры, бочки, баки, цистерны |
|
Ротоформование |
||
Емкости |
Баки, мусорные баки, бочки, |
|
Мобильные туалеты |
Передвижные туалеты |
|
Детские площадки |
Детские игровые комплексы (горки, горки-тоннель, городки) |
|
Дорожные ограждения |
Дорожные блоки, конусы, буферы |
|
Колодцы |
Колодцы, септики, мусоросборы |
|
Эстакады |
Эстакады для мойки колес, установки оборотного вод |
|
Вспенивание |
||
Пенополипропилен |
Изоляционные материалы при строительных работах, фильтры |
Приложение
паспорт качества на Полипропилен 01030 (бален) производства Уфаоргсинтез, ОАО от 25.06.08
Подобные документы
Сырьё для получения полипропилена и его полимеризация. Физико-химические и термодинамические основы процесса получения полипропилена. Металлоценовые катализаторы. Характеристика производимой продукции, используемого сырья и вспомогательных материалов.
курсовая работа [189,8 K], добавлен 19.05.2014Механизм реакции полимеризации и современные полимеризационные процессы. Описание схемы полимеризации пропилена методом "Spheripol". Характеристика сырья и готовой продукции. Материальный баланс производства. Расчет диаметра и рабочей части реактора.
дипломная работа [1,1 M], добавлен 27.06.2022Технологические операции, используемые в процессе производства полимерных труб. Базовые марки полиэтилена и полипропилена, рецептуры добавок, печатных красок, лаков для производства полимерных труб. Типы труб и их размеры. Основные формы горлышка трубы.
контрольная работа [71,3 K], добавлен 09.10.2010Общие сведения и характеристика технологии производства на предприятии ОАО "Химический завод им. Л.Я. Карпова". Описание образующихся химических отходов, их упаковка, транспортировка и распределение. Соблюдение правил экологической безопасности.
курсовая работа [1,0 M], добавлен 10.06.2014Общие сведения и характеристика участка цветного литья. Технология и этапы изготовления художественной отливки "Фортуна". Экономика, организация и планирование производства на исследуемом предприятии, принципы формирования системы охраны труда на нем.
отчет по практике [46,5 K], добавлен 03.11.2011Производство деталей из жидких полимеров (композиционных пластиков). Приготовление смеси и формообразование заготовок. Общие сведения о порошковой металлургии. Способы формирования резиновых деталей. Переработка пластмасс в высокоэластичном состоянии.
реферат [397,5 K], добавлен 03.07.2015История канцелярских папок. Технология производства канцелярских товаров: файлы, папки-уголки, папки-конверты, скоросшиватели. Изготовление офисных принадлежностей из полипропилена с атрибутикой фирменного стиля. Утилизация полипропиленовых отходов.
практическая работа [39,8 K], добавлен 29.11.2014Общие сведения о трубах, их виды, размеры и особенности установки. Оборудование для производства современных труб водоснабжения и газоснабжения, основные материалы для их изготовления. Технология и установки для производства полиэтиленовых труб.
реферат [27,2 K], добавлен 08.04.2012Общие сведения о предприятии ЗАО "Прокопьевский ремонтно-механический завод". Характеристика основных типов и номенклатуры продукции. Методы производства заготовок. Характеристика типового технологического процесса изготовления корпуса подшипника.
отчет по практике [530,3 K], добавлен 07.08.2013Технология производства лекарственного препарата "Нитокс 200". Сведения о продукции и факторы, влияющие на ее качество. Диаграммы Исикавы, Парето. Анализ стабильности основных процессов лекарственного препарата. Расчет среднеквадратического отклонения.
курсовая работа [113,9 K], добавлен 10.01.2011