Работа деталей трактора

Определение сил, действующих на навесной плуг трактора. Расчет и анализ процесса перевода плуга из рабочего в транспортное положение гидросистемой тракторного насоса. Определение продольной устойчивости навесного агрегата при помощи коэффициента запаса.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 16.02.2011
Размер файла 62,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

12

ВВЕДЕНИЕ

Главная задача сельскохозяйственного машиностроения заключается в комплексной механизации сельскохозяйственного производства, что означает применение машин и орудий не только на основных, но и на всех промежуточных операциях при возделывании различных культур.

Земледелие, и в частности выращивание зерновых культур, - древнейшее занятие человека, а его орудия труда имеют многовековую историю развития и совершенствования. Однако наука о сельскохозяйственных машинах и орудиях зародилась сравнительно недавно. Возникновение этой новой прикладной дисциплины связано с именем выдающегося русского ученого, академика В. П. Горячкина (1868-1935).

Современные технологии возделывания культур, основанные на многократных проходах все более тяжелых машинно-тракторных агрегатов, ведут к распылению верхнего и уплотнению нижнего слоев почвы и, следовательно, к расширению зоны ветровой и водной эрозии, снижению вносимых минеральных удобрений и урожайности. Поэтому необходимо пересматривать технологию возделывания культур в направлении создания оптимального взаимодействия системы машина - почва.

плуг трактор гидросистема продольный устойчивость

1. ИСХОДНЫЕ ДАННЫЕ

Эксплуатационный вес трактора (Gтр) - 58500Н.

Длина опорной поверхности гусеницы - 1,740 м.

Расстояние от оси ведущего колеса до центра тяжести трактора - 1,205 м.

Наружный радиус заднего колеса - 0,375 м.

Координаты опорных подшипников: точка 1 (0,170;0); точка 2 (0,240;0,650); точка 3 (0,240; 0,650); точка 4 (0,170; 0).

Длина звеньев 1-5 = 0,815 м; 1-6 = 0,430 м; 3-7 = 0,400 м; 3-8 = 0,200 м;

4-8макс. - 0,810 м; 4-8 мин = 0,560 м; а=17°; 6-7 = 0,620 м.

Теоретическая производительность насоса (Qт) =10•10-4 м3/с.

Диаметр силового цилиндра (d) = 0,11 м.

Высота стойки плуга 5-9 = 0,88 м.

Высота расположения оси подвеса над дном борозды - 0,635 м.

Диаметр опорного колеса (Dк)- 0,500 м.

Расстояние от оси подвеса - 0,920 м.

Координаты центра тяжести плуга:

-от оси подвеса по горизонтали - 0,1020 м

-от опорной поверхности корпуса по вертикали - 0,470 м.

Расстояние от оси подвеса до «среднего» корпуса в горизонтальной

плоскости - 0,1310 м.

Вес плуга- 5800Н.

Число корпусов - 4

Ширина захвата одного корпуса - 0,85 м.

2. СИЛЫ, ДЕЙСТВУЮЩИЕ НА ОРУДИЕ

В процессе работы на навесной плуг действуют следующие силы:

-горизонтальная составляющая сил, действующих на рабочие органы

, (кН)

где к - удельное сопротивление почвы, кН/м ; а - глубина обработки, м; b - ширина захвата рабочего органа, м; n - число рабочих органов.

(кН)

Rz - вертикальная составляющая

Rz= ± ? •RХ (кН).(2)

где ? - коэффициент пропорциональности. Для рабочих органов составляет- 0,2.

Rz =0,2 • 15,12= 3,024 (кН).

-составляющая, действующая в плоскости, перпендикулярной движению агрегата Яу

(кН) (3)

Складывание векторов сил RX и RZ даст силу RХZ:

(кН)(4)

Так же на плуг действуют:

-сила тяжести, приложенная к центру тяжести орудия:

G =5,8 кН; - сила трения полевых досок о стенку борозды:

F=f•Rx, кН

где f- коэффициент трения почвы о сталь, f = 0,5.

F = 0,5 • 15,12 =7,56 (кН)

-усилие на ободе опорного колеса Q;

-усилие в верхней тяге механизма навески S.

Для дальнейших расчетов нам необходимы силы R1 и R2. Для этого построим план сил (смотри рисунок 1.1). В масштабе (1 мм = 100 Н) отложим (начиная от полюса Р) всем известные силы: G, Rz, Rх, F. Проведем вектор R1 соединив конец вектора Rх и полюс. Проведем вектор R2, соединив конец вектора F и полюс. Далее из полученных размеров возможно определить R1 = 17,5 кН и R2 = 24,3 кН.

Рисунок 1.1- План сил

Чтобы определить усилие Q нам поможет метод Жуковского. План скоростей, повернуты на 90°, совместим с механизмом навески. За полюс плана скоростей примем точку 1 крепления нижних тяг на тракторе. Масштаб зададим таким образом, чтобы длина вектора скорости точки 5 равнялась длине звена 1-5.

Чтобы определить скорость точки 9, на плане скоростей необходимо провести линию 1-9', параллельную звену 2-9, так как вектор скорости, точки 9, повернутый на 90 , будет располагаться именно по направлению звена 2-9.

Далее необходимо построить векторы точек приложения сил Q и R2. Для этого на плане скоростей провести линию 5-В и линию 9'-В', параллельно 9-В. Точка пересечения этих линий позволит определить, конец вектора скорости точки В. Аналогично находим и вектор скорости точки Е.

Так как активные силы приложены к одному звену, то получим

кН.(6)

Где 1' - плечо силы R2 относительно полюса ?, м;

h' - плечо силы Q относительно полюса ?, м.

Q = 4.139 (кН)

Получив числовое значение силы откладываем вектор. Значение угла ? =9°...12°, принимаем ? = 12°. Достроив план сил получим числовые значения силы Р=27,89 кН.

3. АНАЛИЗ ПРОЦЕССА ПЕРЕВОДА ПЛУГА ИЗ РАБОЧЕГО В

ТРАНСПОРТНОЕ ПОЛОЖЕНИЕ

Процесс перевода плуга из рабочего в транспортное положение, осуществляется гидросистемой трактора. Если считать, что объёмный коэффициент полезного действия насоса в процессе подъёма - величина неизменная, то продолжительность подъёма в секундах можно рассчитать следующим образом:

Q= 10•10-4 - производительность насоса, м3/с

Определим действительную производительность:

, м3/c

Зная действительную производительность можно определить скорость выдвижения штока гидроцилиндра:

м/сI

Зная скорость и длину штока гидроцилиндра можно определить время подъема навесного орудия:

c.

Усилие S, возникающее на штоке гидроцилиндра при подъёме машины, вычисляют по выражению:

где Мс - момент сопротивления от сил, действующих на плуг при подъёме (относительно мгновенного центра вращения плуга); L - плечо силы относительно оси вращения звена 4- 3, к которому приложена сила; ?- КПД механизма (в приближённых вычисленьях ? = 1); u - передаточное отношение механизма

u = u1•u2;

u1 = а' / b' - передаточное отношение четырёхзвенника 1- 6 - 7- 2;

u2 = ?' /l' - передаточное отношение четырёхзвенника 1-5 -9-2.

Если же мгновенный центр вращения машины на чертеже не располагается, то значение S удобнее определить, пользуясь методом Жуковского.

Чтобы разгрузить чертёж, план скоростей построен вновь вне механзма навески.

Скорость точки 5 в произвольном масштабе изображена отрезком V - 5' (вектор скорости проведён из полюса V параллельно звену 1- 5). Затем из полюса плана проведена линия v - 9', параллельная звену 2- 9, а из точки 5' линия 5' - 9', параллельная звену 5-9. Точка 9' пересечения этих линий определяет конец вектора скорости точки 9 механизма навески. На отрезке 5' - 9' построен треугольник, подобный треугольнику 5 - 9 - М. Вектор УМ1 представляет собой скорость центра тяжести плуга.

Вектор скорости точки 6 будет меньше вектора скорости точки 5 настолько, насколько звено 1-6 меньше звена 1 -5.

Скорость точки 7 можно рассматривать как составляющую:

V7 = V6 + V7- 6

потому из полюса плана скоростей проведена линия V-7', параллельная звену 3- 7, до пересечения с линией 6' - 7', проведённой из точки 6 параллельно звену 6- 7. На отрезке V- Т построен треугольник, подобный треугольнику 3-7-8. так определён вектор скорости точки 8, к которой приложена сила 8.

Без учёта сопротивления пластов

SМу = SL'- GН' = О

Откуда

S = (GН) / L, кН.

Мощность, потребная на привод насоса

N = (Qт•Р)/(?•?0),Вт,

где Р - давление в гидросистеме, Па;

Р = (4S)//(р d2).

Далее подсчитаем необходимые величины

а'=72,5; b'=27,03

?'=114,9·l'=160

Передаточное отношение механизма:

u=u1·u2 = 1,93

Сила S в начале подъема (метод Жуковского):

H=281,43

L=31,57

кН.

Давление в гидросистеме:

Мощность потребляемая на привод насоса:

Сила S в конце подъема (аналитический метод):

H'=171,34

L'=15,28

Мс = G·Н' - момент сопротивления

S=Мс/?·u·L'=37,1 кН.

4. ОПРЕДЕЛЕНИЕ ПРОДОЛЬНОЙ УСТОЙЧИВОСТИ АГРЕГАТА

Устойчивость навесного агрегата оценивается коэффициентом запаса продольной устойчивости X который представляет из себя отношение опрокидывающего момента, создаваемого весом навесного орудия, поднятого в транспортное положение к моменту, способному вызвать отрыв от земли передних колес трактора, находящегося в горизонтальном положении.

где Gм - сила тяжести навесного агрегата;

Gт - сила тяжести трактора;

а" - вылет центра тяжести трактора относительно оси задних колес;

b" - вылет центра тяжести навесной машины относительно оси задних

колес.

Коэффициент запаса продольной устойчивости равен ?= 0.15.

СПИСОК ЛИТЕРАТУРЫ

1. Методическое указание к курсовой работе «Обоснование конструктивных схем и параметров почвообрабатывающих и посадочных машин» / А.И. Любимов, Р.С. Рахимов, В.А. Стрижов, А.Ф. Кокорин. Учеб. пос/ ЧГАУ. - Челябинск, 2004. - 40с. :ил.

2. Справочник технолога-машиностроителя: Т.1/ Под ред. А.Г. Косиловой и Р.К. Мещерякова. - 4-е изд., перераб. и доп. - М.: Машиностроение, 1985.

3. Анурьев В.И. Справочник конструктора-машиностроителя. 5-е изд., перераб. и доп. - М.: Машиностроение, 1979. -Т.1 - 3.

Размещено на Allbest.ru


Подобные документы

  • Проектировочный тяговый расчет трактора 4К2 при условии прямолинейного движения на невзлущенной стерне нормальной влажности. Определение номинальных тягово-скоростных и мощностных параметров. Расчет показателей топливной экономичности и КПД трактора.

    курсовая работа [94,9 K], добавлен 01.03.2014

  • Определение эксплуатационного веса и массы заданного трактора, силы сопротивления качению. Принципы подбора пневмошин и его обоснование, расчет технических данных. Зависимость буксования от тяговой силы. Параметры выбранного серийного тракторного дизеля.

    контрольная работа [463,2 K], добавлен 12.12.2014

  • Гидросистема трелевочного трактора ЛТ-154. Выбор рабочей жидкости. Расчет гидроцилиндра, трубопроводов. Выбор гидроаппаратуры: гидрораспределителя, фильтра, дросселя, предохранительного клапана. Выбор насоса, расчет потерь напора в гидроприводе.

    курсовая работа [232,7 K], добавлен 27.06.2016

  • Определение допустимого напора на одно рабочее колесо насоса; коэффициента быстроходности, входного и выходного диаметра рабочего колеса. Расчет гидравлического, объемного, внутреннего и внешнего механического КПД насоса и мощности, потребляемой им.

    контрольная работа [136,5 K], добавлен 21.05.2015

  • Конструкция трактора "Беларус-1025.4". Методы и приборы, позволяющие экспериментально определить величину угловых скоростей отдельных частей трансмиссии трактора. Существенные параметры разгона трактора с учетом системы топливоподачи CommonRail.

    курсовая работа [1,2 M], добавлен 08.05.2016

  • Технологический процесс сборки и сварки, технико-экономическое обоснование необходимости выпуска кабины трактора. Выбор способа сварки, сварочных материалов и сварочного оборудования. Конструирование, расчет и описание средств технологического оснащения.

    дипломная работа [338,3 K], добавлен 28.08.2010

  • Разработка рационального технологического процесса восстановления одного из возможных дефектов детали "крышки картера" коробки передач трактора ТДТ-55. Определение режимов и расчет времени основных операций по устранению дефекта и восстановлению детали.

    курсовая работа [231,0 K], добавлен 24.01.2012

  • Обоснование выбора компоновки ШСНУ. Расчет коэффициента сепарации газа у приема насоса. Определение давления на выходе насоса, потерь в клапанных узлах. Расчет утечек в зазоре плунжерной пары. Расчет коэффициента наполнения насоса, усадки нефти.

    контрольная работа [99,8 K], добавлен 19.05.2011

  • Разработка структурной схемы демонтажа опорных катков трактора Т-4. Выбор рационального метода восстановления детали. Техническая характеристика узла. Обзор ходовой системы трактора. Снятие и разборка вала. Расчёт режимов перехода высадки и сглаживания.

    контрольная работа [443,5 K], добавлен 15.10.2014

  • Определение кинематических характеристик агрегата. Динамический анализ движения звена приведения и нагруженности рычажного механизма. Расчет динамики машины на ЭВМ. Обработка и графическая проверка результатов. Механизм с коромысловым толкателем.

    курсовая работа [1,2 M], добавлен 23.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.