Переработка одноразовых шприцов

Линия по переработке бытовых полиэтиленовых и полипропиленовых отходов. Переработка использованных одноразовых шприцов с целью получения вторичного сырья из композиции на основе полиэтилена и полипропилена. Обеспечение безопасности и экологичности.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 25.02.2010
Размер файла 11,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Реферат

Дипломный проект на тему "Переработка одноразовых шприцев". Дипломный проект содержит 103 страницы, 18 рисунков, 34 использованных источников.

Полимеры, полипропилен, полиэтилен, композиции, переработка, твердые бытовые отходы, утилизация, дробление, мойка сушка, грануляция, "горячее" гранулирование, шприц, показатель текучести расплава (ПТР).

Объектом по переработке является линия по переработке бытовых полиэтиленовых и полипропиленовых отходов.

Данная линия перерабатывает использованные одноразовые шприцы с целью получения вторичного сырья из композиции на основе полиэтилена и полипропилена.

В экспериментальной части проекта обосновано (доказано), что возможно перерабатывать композиции в готовое изделие. При этом физико-механические свойства композиции практически не претерпевают значительных изменений.

Актуальность проблемы утилизации одноразовых шприцев заставляет задуматься об их вторичном использовании.

Содержание

  • 1. Литературный обзор
    • 1.1 Проблема утилизации полимерных отходов
    • 1.2 Классификация полимерных отходов
    • 1.3 Проблема утилизации медицинских отходов
    • 1.4 Классификация одноразовых шприцев и способы их переработки
    • 1.5 Свойства вторичных полимерных материалов
    • 1.5.1 Свойства вторичного полиэтилена
    • 1.5.2 Свойства вторичного полипропилена
    • 1.5.3 Смеси пластиков
    • 1.6 Молекулярные полимер-полимерные композиции. Некоторые аспекты получения
    • 1.7 Продукты деструкции вторично переработки полиолефинов
    • 1.7.1 Окислительная деструкция
    • 1.7.2 Термическая деструкция полиолефинов
    • 1.7.3 Механическая деструкция
    • 1.8 Добавки
    • 1.8.1 Стабилизаторы
    • 1.8.2 Пластификаторы
    • 2. Технологическая часть
    • 2.1 Описание технологического процесса вторичной переработки одноразовых шприцев и последующего изготовления гранул
    • 2.2 Характеристика исходного сырья и вспомогательных материалов
    • 2.3 Описание основного технологического оборудования
    • 2.3.1 Дробильная установка
    • 2.3.2 Моечная машина
    • 2.3.3 Стадия очистки воды
    • 2.3.4 Циклон
    • 2.3.5 Загрузочный бункер
    • 2.3.6 Экструдер-гранулятор
    • 2.4 Расчетная часть
    • 2.4.1 Материальный баланс процесса производства вторичных гранул на основе композиций полиэтилена и полипропилена
    • 2.4.2 Расчет производительности экструдера
    • 3. Экспериментальная часть
    • 3.1 Оценка реологических свойств полимера и композиций на их основе
    • 3.2 Объекты исследования и методика проведения эксперимента
    • 3.3 Результаты эксперимента
    • 3.4 Обсуждение результатов
    • 4. Автоматизация производственных процессов
    • 4.1 Основы автоматизации производства
    • 4.2 Основные характеристики системы автоматизации проектируемого экструдера
    • 4.3 Регулирование значений температуры различных зон пластикационого канала
    • 4.4 Контроль и регулирование давления расплава в пластикационном канале экструдера
    • 4.5 Пульты управления
    • 5. Безопасность и экологичность
    • 5.1 Анализ опасностей и вредных факторов на предприятии по производству пластиковой посуды ООО "Алькор"
    • 5.2 Обеспечение безопасности
    • 5.2.1 Роторная дробилка
    • 5.2.2 Расчет искусственного освещения
    • 5.3 Охрана окружающей среды
    • 5.3.1 Характеристика загрязнений
    • 5.3.2 Очистка сточных вод
    • 5.4 Ликвидация и предупреждение чрезвычайных ситуаций
    • 5.4.1 Возможные чрезвычайные ситуации
    • 5.4.2 Планы ликвидации аварий
    • 6. Бизнес-план инвестиционного проекта
    • 6.1 Характеристика предприятия
    • 6.2 Характеристика производимой продукции и оценка рынка сбыта продукции
    • 6.3 Расчет производственной программы
    • 6.3.1 Режим работы цеха
    • 6.3.2 Определение количества оборудования
    • 6.4 Определение капитальных затрат
    • 6.5 Расчет фонда оплаты труда
    • 6.5.1 Составление баланса рабочего времени
    • 6.5.2 Определение фонда заработной платы рабочих
    • 6.6 Расчет фонда оплаты труда приведен в таблице 6.4
    • 6.6 Расчет себестоимости продукции
    • 6.6.1 Определение стоимости сырья и материалов на единицу продукции
    • 6.6.2 Проектная калькуляция себестоимости продукции
    • 6.7 Финансовая оценка инвестиции
    • 6.7.1 Расчет прибыли
    • 6.7.2 Расчет рентабельности
    • Заключение
    • Список использованных источников

Введение

В современном мире существует свыше 400 различных видов пластмассовых отходов. Универсального решения экологической проблемы не найдено до сих пор, поэтому идея радикального решения проблемы отходов остается актуальной. Из-за специфических свойств полимерных материалов, которые не подвергаются гниению, коррозии, а при сжигании полимеров образуется токсичная зола и газы, такие как аммиак, оксиды азота, хлороводород, диоксины, - проблема их утилизации носит, прежде всего, экологический характер. Наряду с этим возникают экономические проблемы, так как постепенно возрастают потребности в удешевлении сырья для производства полимеров [1].

Полимерные отходы - это ценное сырье, которое можно регенерировать и повторно использовать для получения полимерных материалов или как сырье для получения мономеров, олигомеров, смазочных масел, строительных материалов, и, наконец, как топливо.

Материальные и энергетические ценности, заключенные в отходах, относительно небольшие затраты на регенерацию предопределяют получение существенного экономического эффекта, усиливающегося благодаря экономии первичного сырья.

Поэтому, в последнее время, большой интерес представляет собой вторичная переработка с получением материалов, продуктов, изделий, пригодных к дальнейшему использованию. В странах Западной Европы наибольшее распространение получил механический рециклинг. Во Франции и Германии способом механического рециклинга перерабатывается 20% полимерных отходов [2,3].

На сегодняшний день от общего объема ТБО количество образующихся отходов одноразовых шприцев составляет 2%. Системы сбора, удаления, переработки и обезвреживания, медицинских отходов в России в настоящее время несовершенны. Количество медицинских отходов имеет устойчивую тенденцию к интенсивному росту [3].

Использованные одноразовые шприцы чаще не проходят процесс сортировки, т.е. не отделяются поршень, цилиндр и игла, которые состоят из разных материалов (ПЭ, ПП и металл соответственно). При этом следует уточнить, что металл всегда легче отделить от полимерных материалов. Отделение же таких материалов, как ПП и ПЭ, в автоматическом режиме представляет собой достаточно дорогостоящий процесс. Поэтому целью данного дипломного проекта явилась разработка технологической линии по переработке одноразовых шприцев во вторичное сырье.

Задачами данного дипломного проекта являются:

Обзор методов по проблеме переработки одноразовых шприцев.

Определение реологических характеристик (ПТР, эффективная вязкость, напряжение сдвига, скорость сдвига), с целью определения возможности совместной переработки композиций на основе полимеров ПП и ПЭ.

Создание технологической линии по переработке одноразовых шприцев.

1. Литературный обзор

1.1 Проблема утилизации полимерных отходов

За один только год в России образуется почти 750 тыс. т полимерных отходов. Около 10% перерабатывается. Переработке подвергаются, главным образом, отходы производства, и лишь некоторые отходы потребления.

Утилизация полимерных отходов является не менее сложным и дорогостоящим делом, чем производство изделий из полимеров, поэтому большинство отходов складируют вместе с другим мусором на свалках [3,4].

Полностью безотходных технологий в природе не существует, поэтому следует заниматься не только поиском малоотходной технологии, но в большей мере поиском способов утилизации отходов.

Различают три источника образования полимерных отходов:

1. Отходы синтеза полимеров, которые образуются при осуществлении процессов синтеза полимеров. Это - низкомолекулярные фракции полимеров, отходы в виде слитков - выливов, отходов чистки аппаратов, россыпей и др.

2. Отходы переработки полимерных материалов в изделия. Это - бракованные изделия, литниковые системы, слитки из смесей полимеров, образующиеся при чистке аппаратов и другие технологические отходы.

3. Отходы потребления - это изношенные (амортизированные) изделия, которые утратили свои потребительские свойства вследствие физического или морального износа. Это - упаковка, транспортная тара, предметы домашнего обихода, детали машин, приборов и др. Отходы потребления составляют около 85% всех полимерных отходов и по своему объему приближаются к объему выпуска полимерных материалов [5].

Полимерные отходы потребления в своем составе содержат до 50% полиолефинов, до 15% полистиролов и их сополимеров, около 10% поливинилхлоридных пластикатов, около 10% полиэтилентерефталата и в небольших количествах других полимеров.

1.2 Классификация полимерных отходов

Полимерные отходы разделяют на отходы производства (технологические) и потребления. Различают следующие типы классификаций, которые представлены в таблице 1.1 [5,6].

Таблица 1.1 - Классификация полимерных отходов

Тип классификации

Наименование

Характеристика

По сложности и цене утилизации

С хорошими свойствами

чистые отходы производства (литники, обрезки, облой, брак), условно чистые отходы потребления

Со средними свойствами

отходы производства и потребления, содержащие допустимое количество загрязнений, а также отходы от производств пищевого назначения.

Трудно утилизируемые отходы

сильно загрязненные и смешанные отходы производства и потребления, отходы из композиционных материалов, детали бытовой и автомобильной техники

По видам и типам полимеров

Отходы крупнотоннажных и дорогих конструкционных пластиков

ПЭНП, ПЭВП, ПП, ПС, АБС, ПА, ПК, ПЭТ, ПВХ

Отходы упаковки, мебельного производства, строительства

использованная тара из ПЭТ, двух - или многослойные пленки для упаковки пищевых продуктов: ПП/ПА, ПП/ПЭТФ, ПЭ/ПЭТФ, смешанные отходы ПС, ПП, ПЭНП, ПЭВП, ПЭТ, АБС.

По способам утилизации и их экологическому воздействию

Повторное использование

Все виды отходов

Переработка отходов полимеров в мономеры и искусственное топливо (пиролизно-сырьевой метод)

Все виды отходов

Сжигание с целью получения тепловой и электрической энергии (энергетический метод)

Все виды отходов

Захоронение на полигонах общего назначения (закапывание).

Все виды отходов

1.3 Проблема утилизации медицинских отходов

Медицинские отходы значительно отличаются от остальных отходов тем, что в них кроется опасность для человека, обусловленная, прежде всего наличием в их составе возбудителей различных инфекционных заболеваний, токсических, а нередко и радиоактивных веществ. К тому же длительность выживания в таких отходах патогенных микроорганизмов достаточно велика. Так, например, если в 1г бытовых отходов содержится 0,1-1млрд микроорганизмов, то в медицинских - до 200-300млрд микроорганизмов. При этом следует учитывать, что количество медицинских отходов имеет тенденцию к интенсивному росту, а вследствие увеличения номенклатуры применяемых средств - еще и к вариабельности состава. Проблема утилизации медицинских отходов привлекает к себе все более пристальное внимание. Еще в 1979г. Всемирная организация здравоохранения (ВОЗ) отнесла отходы медицинской сферы к группе особо опасных и указала на необходимость создания специализированных служб по их уничтожению и переработке. Базельская конвенция в 1992г. выделила 45 видов опасных отходов, список которых открывают клинические отходы. К 2005г. в мире, по обобщенным данным, их накопилось уже около 1,8 млрд, что составляет примерно 300кг на каждого жителя планеты. Особую опасность представляют инъекционные иглы и шприцы, поскольку неправильное обращение с ними после применения может привести к их использованию [2,6,7].

Переработка отходов медицинского назначения, в частности одноразовых шприцев, остается на сегодняшний день весьма актуальной проблемой. Во многих областях России сложилась критическая обстановка по сбору и сортировке медицинских изделий [2,4].

Медицинские отходы составляют около 2% от общего объема твердых бытовых отходов. В России в настоящее время образуется 0,6-1 млн. тонн медицинских отходов в год. Система сбора, удаления, переработки и обезвреживания медицинских отходов в нашей стране пока несовершенна, при этом количество их имеет устойчивую тенденцию к интенсивному росту [3].

В городе Магнитогорске ежегодно образуется до 130 тонн медицинских одноразовых шприцев.

В таблице 1.2 указаны медицинские учреждения города и сколько тонн в год приходится на каждое учреждение.

Таблица 1.2 Отходы одноразовых шприцев в городе Магнитогорске

Наименование учреждение

Количество в городе

Количество на одно учреждение, тонн/год

Сумма, тонн/год

Больницы

9

5,2

46,8

Диспансеры

10

3

30

Санатории

11

1

11

Поликлиники

Взрослые

Детские

16

9

1,5

1,0

24

9

Ветлечебницы

3

0,7

2,1

Лаборатории

3

0,1

0,3

Роддома

Консультации

Итого

3

5

0,33

0,5

0,99

2,5

126,7

На полигонах ТБО уничтоженные механическим путем фармацевтические препараты резко увеличивают токсичность образующегося фильтрата, что создает риск загрязнения не только почвы, но и подземных водоносных горизонтов.

ВОЗ декларирует следующие положения, касающиеся переработки медицинских отходов:

использование всеми производителями одной и той же пластмассы для изготовления шприцев и других изделий однократного применения, чтобы облегчить их утилизацию;

преимущественное использование медицинских устройств, не содержащих поливинилхлорид [6,8].

1.4 Классификация одноразовых шприцев и способы их переработки

Сегодня на отечественном фармацевтическом рынке широко представлены стерильные изделия медицинского назначения. Производители постоянно совершенствуют и расширяют их ассортимент. Особое место среди них занимают шприцы инъекционные одноразового применения. В первую очередь это определяется их использованием как медицинскими специалистами для оказания помощи больным с тяжелыми патологическими процессами, так и далекими от медицины людьми для оказания помощи себе или своим близким и знакомым.

Шприц состоит из цилиндра и шток - поршня (разборного или неразборного). Цилиндр имеет наконечник-конус типа "Луер", упор для пальцев и градуированную шкалу. Узел шток-поршень состоит из штока с упором, поршня с уплотнителем и линией отсчета [3,5].

Материалы, из которых изготовляют шприцы, зависят от их конструкции, назначения и метода стерилизации. Материалы должны быть совместимы с инъекционными препаратами.

Для изготовления цилиндров рекомендуются в основном определенные сорта полиэтилена высокой плотности, полистирола и сополимера стирола и акрилонитрила, отвечающие фармакопейным требованиям. Поршни изготовляют из высококачественной натуральной (натуральный каучук) и искусственной (силиконовый каучук) резины. Для штоков и уплотнителей, неразборных шток-поршней используется полипропилен [4].

В таблице 1.3 представлена классификация одноразовых шприцев.

Таблица 1.3 - Классификация шприцев

Тип классификации

Виды шприцев

По строению

двухкомпонентные (цилиндр и поршень)

трехкомпонентные (цилиндр, поршень и плунжер)

По объему

малого объема (0,3, 0,5 и 1 мл)

стандартного объема (2, 3, 5, 10 и 20 мл).

большого объема (30, 50, 60 и 100 мл).

По типу присоединения иглы

разъем типа Луер, который исключает размыкание шприца от иглы;

По типу присоединения иглы

разъем типа Луер-Лок, при котором игла вкручивается в шприц;

шприц с несъемной, интегрированной в корпус цилиндра иглой.

На сегодняшний день существуют различные способы переработки одноразовых шприцев, схема которых представлена на рисунке 1.2

Рисунок 1.2 - Способы переработки одноразовых шприцев

1) Термические методы

а) Инсинерация (Сжигание)

Термический метод уничтожения отходов, а попросту, их сжигание уже не является оптимальным решением проблемы медицинских отходов. Установки, предназначенные для сжигания отходов (инсинераторы) были широко распространены в мире еще 10-15 лет назад. Но с тех пор многое изменилось. В частности, выяснилось, что сжигание не так уж и безобидно и при всех своих достоинствах обладает такими неприятными особенностями, как, например, образование диоксинов. Диоксины - это загрязнители, выделяющиеся при сжигании отходов, вызывающие ряд заболеваний, включая рак, повреждения иммунной системы, нарушение деятельности репродуктивной и других систем организма. Кроме того, они обладают свойством биокумуляции, то есть способны перемещаться по пищевым цепям от растений к животным, концентрируясь в мясе и молоке и, как результат, в теле человека. Диоксины являются предметом особого беспокойства, так как повсеместно распространяются в окружающей среде человека на тех уровнях, на которых способны вызвать нарушения жизнедеятельности живых организмов. Поэтому целые популяции уже сейчас страдают от пагубных последствий воздействия диоксинов. Инсинераторы также вносят свой "вклад" в загрязнение окружающей среды ртутью, сильнодействующим нейротоксином, ослабляющим двигательные, сенсорные и ряд других функций [4].

Инсинераторы - источник поступления в окружающую среду значительных количеств тяжелых металлов, таких, как свинец, кадмий, мышьяк и хром, а также галогенсодержащих углеводородов, кислотных паров ("предшественников" кислотных дождей, частиц, приводящих к заболеванию дыхательной системы), парниковых газов.

Сегодня проблема распространения загрязнителей не решается должным образом: они просто перемещаются из одной среды (воздуха) в другую (почву или воду).

Зола из инсинераторов крайне токсична, на что часто не обращают должного внимания. Захоронение фильтров и золы на полигонах ТБО также не безопасно, поскольку есть вероятность попадания токсинов в грунтовые воды; в некоторых местах зола просто рассеивается и попадает в населенные или сельскохозяйственные районы.

Большинство специалистов приходят к мнению, что сжигание - это неустойчивая и устаревшая форма обращения с медицинскими отходами [4,9].

б) Пиролиз

Альтернативой обычным методам термической переработки твердых отходов являются технологии, предусматривающие предварительное разложение органической фракции отходов в бескислородной атмосфере (пиролиз), после чего образовавшаяся концентрированная парогазовая смесь (ПГС) направляется в камеру дожигания, где в режиме управляемого дожига газообразных продуктов происходит перевод токсичных веществ в менее или полностью безопасные.

К принципиальным положительным особенностям бескислородных пиролизных технологий уничтожения органических материалов, позволяющих обеспечить экологическую безопасность выбросов, в том числе и хлорсодержащих, относятся:

возможность управляемого сжигания при высокой температуре концентрированной неразбавленной парогазовой смеси (теплота сгорания - 6 680-10 450 кДж/м3), что позволяет обеспечить высокую (1200-1300 °С) температуру всего объема продуктов сгорания;

выделяющийся при пиролизе хлорсодержащих материалов активный хлор уже в камере термического разложения немедленно реагирует с обязательным продуктом пиролиза любой органики - водородом, образуя стойкое соединение HCl, которое легко нейтрализуется на стадии доочистки. Тем самым предотвращается образование диоксинов и фуранов.

Кроме улучшенных по сравнению с инсинераторами экологических показателей одним из достоинств пиролизных установок является то, что для них не надо строить капитальные сооружения и высокие дымовые трубы. Установки могут монтироваться под навесом или в ангарах легкого типа на бетонном основании.

Плазменная технология.

В плазменных системах используется электрический ток, который ионизирует инертный газ (например, аргон) и формирует электрическую дугу с температурой около 6000°C. Медицинские отходы в этих установках нагреваются до 1300-1700 °C, в результате чего уничтожаются потенциально патогенные микробы, и отходы преобразовываются в шлак, металлы и инертные газы.

2) Альтернативные методы

Вынужденное сокращение использования установок для сжигания отходов стало причиной создания нового производства - альтернативных систем обработки медицинских отходов. В настоящее время существует более 40 таких систем, производимых более чем 70 изготовителями в США, Европе, на Ближнем Востоке и в Австралии. Они различаются по пропускной способности, мощности, степени автоматизации и сокращению объема обрабатываемых отходов. В их основе лежит один или несколько следующих методов:

нагревание отходов минимум до 90-950 °C посредством микроволновых печей, радиоволн, горячего масла, горячей воды, пара или перегретых газов;

обработка отходов химикалиями типа гипохлорита натрия или диоксида хлора;

обработка отходов горячими химикалиями;

обработка медицинских отходов источником радиации.

а) Химические утилизаторы

В химических утилизаторах отходы подвергаются воздействию обеззараживающих химических веществ, в результате чего утрачивают свою эпидемиологическую опасность. Существует несколько таких способов нейтрализации отходов. Однако, поскольку получаемый в результате обработки продукт нуждался в нейтрализации, эти способы не нашли практического применения. Одной из наиболее удачных разработок можно считать химический утилизатор "Стеримед-1". В этих аппаратах происходит механическое измельчение загружаемых отходов (что делает их непригодными для повторного использования) с одновременной обработкой дезинфицирующей жидкостью "Стерицид", состоящей из глютарового альдегида, составов четвертичного аммония и алкоголя. За один цикл продолжительностью 15-20 мин. установка "Стеримед-1" способна переработать около 70л загружаемых отходов. Выгрузка отработанного дезинфектанта в подставленную предварительно емкость происходит автоматически, он сепарируется и сливается в канализацию. Установки перерабатывают практически любые медицинские отходы, кроме биологических. Следует избегать больших количеств стеклянных и пластиковых отходов, которые выводят из строя измельчитель.

Главный недостаток химических утилизаторов - необходимость постоянного использования дорогого запатентованного дезинфектанта. Кроме того, отмечаются повышенная шумность при работе аппарата и чересчур высокая влажность отходов на выходе. Дороговизна технического обслуживания и запасных частей (например, измельчителя) также заставляет некоторых потенциальных покупателей отказаться от приобретения таких установок.

б) Термохимические утилизаторы

Термохимические установки сочетают в себе нагревание отходов с их обработкой дезинфицирующими составами. На российском рынке представлена установка "Ньюстер" (Италия), в которой загруженные в реакционную камеру отходы измельчаются быстровращающимися массивными острыми ножами. Одновременно за счет трения измельчаемых отходов о стенки камеры происходит их нагревание до 150-160 °С. При этом в камеру впрыскивается раствор гипохлорита натрия (NaClO). Обеззараживание отходов происходит вследствие их нагрева и контакта с продуктами распада гипохлорита (газообразным хлором и окисью хлора). Токсичность и взрывоопасность выделяющихся газов обусловливают необходимость оснащения установки мощными фильтровентиляционными устройствами, что является ограничением в ее применении. Некоторые пользователи отмечают дороговизну сменяемых ножей, которые быстро выходят из строя, раздражение слизистых оболочек у обслуживающего персонала, а также повышенную шумность работы установки. К достоинствам аппарата стоит отнести хорошую производительность (100-130 л исходных отходов в час) и высокую степень измельчения, а следовательно, уменьшение объема отходов.

3) Механический способ переработки

Переработка медицинских отходов должна начинаться с определения степени изменения их свойств и выбора наиболее эффективной технологии их использования.

Высокое качество готовых изделий и стабильность технологического процесса могут быть обеспечены лишь при равномерном дозировании измельченных или гранулированных отходов и хорошем смешении их с исходным сырьем.

В процессе вторичного использования пластмасс необходимо предотвратить или уменьшить ухудшение их физико-механических и реологических свойств вследствие старения, вызываемого напряжением сдвига и нагреванием - термомеханическим воздействием, которому подвергаются полимеры при размоле, расплавлении и формовании. С этой целью в композиции на основе вторичных полимерных материалов вводят дополнительные стабилизаторы, которые позволяют без изменения технологических свойств полимеров сохранить их эксплуатационные характеристики [10].

Сбор и сортировка медицинских отходов являются наиболее слабым звеном в процессе организации переработки. Идеальная сортировка отходов должна обеспечить разделение их по видам, маркам, цвету, степени загрязненности, содержанию инородных материалов, физико-механическим свойствам, что требует больших затрат и делает утилизацию отходов неэффективной.

Наиболее простой и в то же время удовлетворяющей основным требованиям является сортировка, осуществляемая в процессе сбора медицинских отходов непосредственно на рабочем месте, то есть на стадии их образования.

Технологический процесс переработки вторичного полимерного сырья проходил по стандартной схеме:

измельчение;

отмывка;

сушка;

грануляция.

Отобранные медицинские отходы поступают на предварительную очистку. Вторичное сырье подается на загрузочный транспортер установки для предварительного измельчения.

Измельчение сырья происходит в результате взаимодействия зубчатого ротора, имеющего пластинчатые ножи, со стационарно закрепленной гребенкой [2].

Механизм разрушения полимерных материалов принципиально отличается от процессов, протекающих при измельчении низкомолекулярных соединений, так как энергия разрушения полимеров расходуется главным образом на механические потери. Поэтому оптимальные условия для измельчения отходов полимерных материалов возникают при высоких скоростях деформирования. Разрушению способствуют также снижение температуры, при которой материал становится стеклообразным, хрупким [5,11,12].

Далее материал поступает в моечную ванну, обеспечивающую промывку измельченного материала.

Мойка осуществляется в две стадии. Сначала промывается измельченный материал в системе с ПАВ, а затем просто водой. Материал далее подается в вибросито. Здесь происходит отделение загрязненной промывной воды, которая затем сливается в отстойник.

После вибросита материал поступает в центрифугу для просушки. Влажность вторичного сырья на выходе из центрифуги составляет 10%. Далее материал шнеком подается в сушильную камеру барабанного типа.

Сушка осуществляется путем обдува материала потоком горячего воздуха, поступающего от электробатареи.

На режим сушки оказывают влияние следующие показатели:

начальная влажность продукта, вес;

расход воздуха;

время прохождения продукта внутри установки;

Влажность вторичного сырья на выходе из сушильной камеры составляет 10%.

Конечная влажность просушенного материала должна быть не выше 1%.

После просушки материал поступает в бункер-накопитель, а затем с помощью питателей принудительно загружается в бункер экструдера для грануляции. Материал, проходя по цилиндру, уплотняется, расплавляется и гомогенизируется. Корректировку температурных режимов проводят в процессе работы в зависимости от свойств сырья.

Для устранения воздуха, газа и летучих веществ материальный цилиндр оснащен прорезями. Выйдя из цилиндра, расплав поступает в зону грануляции. Здесь материал продавливается через фильеру со многими отверстиями, а затем срезается вращающимися ножами. Гранулы под действием центробежной силы отбрасываются к стенкам, где охлаждаются потоком воздуха [4].

Самым оптимальным методов из всех выше изложенных является механический способ переработки, к как при этом методе практически не выделяется вредных веществ, и к тому же готовый продукт может использоваться повторно, поэтому в настоящее время способ механической переработки усовершенствуется, и начинает иметь массовых характер.

1.5 Свойства вторичных полимерных материалов

1.5.1 Свойства вторичного полиэтилена

Различные структурные типы коммерческих полиэтиленов (ПЭ) сильно влияют на поведение этих материалов при вторичной переработке. Разумеется, разветвленность (короткими или длинными цепями) влияет на кинетику деструкции, а далее и на конечные свойства повторно переработанного материала, испытавшего нескольких этапов переработки. Это поведение имеет особое значение для тех пластмасс, которые подвергаются не только термомеханической деструкции во время переработки, но также и другим деструктивным воздействиям при дальнейшем использовании. Фотоокисление и прочие виды деструкции вызывают различные структурные и морфологические изменения, зависящие от строения ПЭ [13].

Молекулярная масса бывших в употреблении изделий является весьма высокой, потому что деструкция, испытываемая материалом этого типа, при краткосрочном использовании весьма незначительна. Последнее обстоятельство предполагает, что свойства вторично переработанного материала близки к таковым у исходного полимера.

Вторично переработанные полимеры испытывают, по крайней мере, два-три цикла переработки, и в каждом из них плавление вызывает дополнительную деструкцию материала. Кроме того, увеличение количества вторично переработанных полимеров и использование смесей из вторично переработанных и первичных материалов ведет к тому, что значительная доля рекуперированных пластиков перерабатывается вновь и вновь. Это означает, что свойства таких многократно переработанных полимерных материалов постоянно изменяются с увеличением числа циклов переработки в сторону их ухудшения.

Свойства восстановленного ПЭВП зависят не только от свойств утилизированных продуктов, но также от характера и числа циклов переработки. Кроме того, как на свойства расплавов, определяющих обрабатываемость полимера, так и на свойства твердого материала до некоторой степени влияет вторичная переработка.

Таким образом, необходимо знать связь между свойствами и циклами переработки, чтобы иметь возможность до некоторой степени предусмотреть вероятные характеристики вторично переработанных пластмасс, и следовательно, определить доступные для этих материалов сферы применения. Разумеется, конечные свойства будут зависеть не только от числа циклов переработки, но также от свойств рекуперированных материалов, от характера переработки и ее условий.

У полимера, прошедшего через несколько циклов переработки на одношнековом экструдере, вязкость уменьшается с увеличением числа циклов вторичной переработки. Это означает что, при повторных экструзиях термомеханические напряжения, действующие на расплав, вызывают определенную деструкцию полимера.

Однако у полимера прошедшего через двухшнековый экструдер вязкость уменьшается только при высоких скоростях сдвига, а при низких скоростях сдвига эффект обратный. Термомеханическое напряжение вызывает как разрывы цепей, так и молекулярный рост, главным образом из-за образования длинных боковых ветвей и сшивания. Конечное молекулярное строение зависит от относительного вклада этих двух процессов.

Следовательно на конечные свойства вторично переработанного полимера влияет строение ПЭВП и характер перерабатывающего оборудования [11].

1.5.2 Свойства вторичного полипропилена

Полипропилен (ПП) имеет широкую область применения. Основным источником рекуперированного ПП являются контейнеры из-под аккумулятор, пленки, детали автомобилей и т.п. Во многих случаях строение, морфология и свойства вторично переработанного ПП очень близки к таковым у исходной полимера.

Существенное изменение строения и морфологии встречается в тех случаях, когда изделия из ПП попадают в жесткие условия работы, например, когда речь, идет об автомобильных бамперах, постоянно находящихся под открытым небом, трубах для горячей воды и т.д. Деградация ПП из-за потери стабилизаторов особенно скоротечна и опасна. Фактически ПП очень подвержен всем типам деструкции ввиду своего химического строения, в особенности из-за наличия лабильного третичного углерода в главной цепи. Явления деструкции при переработке усиливаются присутствием механического напряжения. Поэтому переработка и использование ПП возможны только при хорошей стабилизации материала.

Деструкция в ходе переработки может быть очень значительной, если перед каждой технологической операцией не вводится стабилизатор.

Безразмерная молекулярная масса рассчитывалась как отношение величины, полученной после каждого цикла переработки, к молекулярной массе исходного полимера. Кинетика деструкции зависит от механического напряжения, приложенного к расплаву. При снижении молекулярной массы и, следовательно, вязкости полимера механическое напряжение уменьшается и его влияние на деструкцию падает. Поэтому кинетика деструкции ускорена на первых циклах, когда молекулярная масса и механическое напряжение выше [12].

Изменение молекулярной массы сопровождается изменением кристалличности, причем уменьшение массы обычно влечет увеличение кристалличности; эти две тенденции сильно влияют на механические свойства, хотя и в различной стегни. Очевидно, что уменьшение молекулярной массы и увеличение кристалличности вызывает снижение относительного удлинения при разрыве, но эти взаимосвязанные изменения производят противоположный эффект на разрывное напряжение и модуль упругости. Оба этих параметра возрастают с увеличением молекулярной массы и кристалличности. Модуль упругости экструдированных образцов возрастает с числом циклов переработки. Столь различное поведение было объяснено изменением не только молекулярной массы, но и возрастанием кристалличности (из-за уменьшения молекулярной массы), что имеет большее значение для экструдированного ПП. Относительное удлинение, напротив, уменьшается в обоих образцах, причем в большей степени в полимере, переработанном литьем под давлением. Влияние повторных переработок неблагоприятно для разрывного удлинения: после пяти экструзий пластичный ПП становится хрупким.

Основной результат повторных циклов переработки заключается в уменьшении молекулярной массы при отсутствии заметного ветвления. Поэтому кристалличность растет. Уменьшение молекулярной массы и увеличение кристалличности вызывает уменьшение относительного удлинения (а также вязкоупругий переход), но по-другому влияет на жесткость. Модуль упругости и прочность при растяжении растут с ростом кристалличности и уменьшаются с падением молекулярной массы [11].

1.5.3 Смеси пластиков

Утилизация изделий, состоящих из комбинации различных полимеров, является насколько трудоемкой, настолько и перспективной задачей. При создании вторичных материалов с допустимыми механическими свойствами из смесей пластиков отпадает необходимость в сортировке медицинских изделий, что должно положительно сказаться на себестоимости переработки.

Для достижения видимых успехов в утилизации многокомпонентных отходов необходимо вести переработку с максимально коротким циклом. Задача состоит в том, чтобы, с одной стороны, избежать лишних материальных затрат, а с другой - сократить время переработки, не давая возможности полимерам, входящим в состав материала, начать разрушаться. По этой причине необходимо выдерживать рабочую температуру низкой. Необходимо также выбирать им приложения, которые не требуют высоких механических свойств и не обладают значительными габаритами. Только так можно избежать серьезного влияния себестоимости переработки на конечную стоимость изделия, а также нивелировать невысокие механические свойства многокомпонентного полимера малыми размерами изделий формируемых из него.

С другой стороны смеси полимерных отходов можно рассматривать как композицию ПКМ и выбрав оптимальные условия переработки таких композиций получать сырье не многим отличающиеся от первичного [14].

1.6 Молекулярные полимер-полимерные композиции. Некоторые аспекты получения

В последние десятилетия ассортимент композиционных материалов, изготавливаемых из смесей или сплавов промышленно важных (базовых) полимеров, значительно расширился. Эффективным способом получения новых материалов, обладающих необходимыми свойствами, является смешение двух и более термопластов - сложный физико-химический процесс, протекающий под действием механических и температурных полей. Большинство полимеров несовместимы друг с другом, однако, направленно изменяя их морфологию, можно получать смеси с удовлетворительными эксплуатационными характеристиками.

Другой причиной повышенного внимания к полимер-полимерным композициям является то обстоятельство, что полимерные смеси подобного типа часто образуются в качестве отходов производства, и дешевые деградировавшие полимерные продукты могут быть использованы повторно. В силу как экономических, так и экологических причин с начала 80-х годов объем утилизации полимерных смесей и сплавов термопластичных материалов значительно вырос. Ужесточение требований к экологической чистоте производства и потребления полимерных продуктов заставляет исследователей сконцентрировать свои усилия на проблемах повторного использования ПО (60% от общего количества полимерных отходов) [12,14].

При условии надлежащего разделения, обработки или модификации этих материалов они могут стать доступным и дешёвым источником полимерного сырья, поскольку на их долю в экономически развитых странах приходится примерно 200 млн. т. твёрдых бытовых отходов в год.

Однако ввиду разнородного состава такого сложного сырья в ходе его повторного использования происходит образование ряда несовместимых ингредиентов, физические свойства конечного продукта ухудшаются, материалы становятся хрупкими. Расходы, связанные с развитием техники рециклинга и сортировкой сырья, т.е. с разделением его на отдельные совместимые типы полимеров, существенно увеличивают соотношение цена: свойства по сравнению с таким соотношением в производстве, основанном на использовании смесей первичных полимеров. Разные типы пластиков - термопласты, реактопласты смесевые композиционные многослойные материалы и т.п. - требуют разного подхода к переработке [15].

Анализируя проблему совместимости полимеров, необходимо учитывать не только термодинамические, но и химические аспекты, а именно взаимодействие между макромолекулами. Существуют два подхода к конструированию совместимых полимер-полимерных систем: путём соединения макромолекул химическими связями (синтез блок-сополимеров, взаимопроникающих сеток, сшивание компонентов смеси) и путём такого изменения химического строения полимеров, которое приводит к отрицательному значению свободной энергии смешения. Если полимеры имеют функциональные группы, способные к сильному взаимодействию, то некоторые из ингредиентов либо модифицируют, изменяя химическое строение мономерных звеньев, либо осуществляют сополимеризацию. При термодинамической несовместимости компонентов общая кристаллическая решетка не формируется (т.е. совместные кристаллы не образуются). Тем не менее, при этом возможно существование промежуточного (переходного) граничного слоя между ингредиентами ППК благодаря наличию совместных надмолекулярных структур, особой укладке цепей и отсутствию чётких границ раздела между элементами надмолекулярного порядка (даже в случае кристаллических полимеров). Этим в значительной степени определяется уровень и природа сил адгезионного взаимодействия в системе, на которые сильно влияет площадь истинного контакта фаз, микрореологические процессы и контактные реакции на межфазной границе. Специфика адгезионных взаимодействий зависит и от условий приготовления ППК: например, при механическом смешении компонентов, промежуточные слои образуются только в результате физического взаимодействия их частиц [14].

Один из путей получения новых материалов с улучшенными свойствами - создание микрогетерогенных композиций с регулируемой неоднородностью структуры. К таким материалам относят композиты, одним из ингредиентов которых является ПО. Экономико-экологический анализ "жизненного цикла" полимеров (включающего их синтез, переработку, повторное применение, и, наконец, окончательную утилизацию отходов) позволил поставить на первое место среди пластиков общего назначения именно ПО, а из их числа полипропилен (ПП) и полиэтилен низкого давления (ПЭНД). Этот выбор определяется также разнообразием смесей сплавов и композитов на основе ПО.

Во многих случаях, хотя далеко не всегда, в таких системах действительно достигается совмещение ингредиентов на молекулярном уровне. Определение подобных композиций как молекулярных следует воспринимать с известной долей условности, поскольку в процессе получения ППК смешение ингредиентов происходит не только на молекулярном уровне, но и на уровне микрофазовых образований, включающих большое число однотипных макромолекул. Кроме того, в ряде случаев нет возможности чётко разграничить способы получения ППК: многие из них могут образовываться по различным механизмам. В силу этих причин затруднена и формальная классификация ППК [12].

Для понимания специфики систем, включающих ППК, необходимо кратко рассмотреть способы анализа их термодинамических и физико-механических свойств.

Обозначим условно пару полимеров входящих в состав композиции 1 и 2 соответственно.

Использование простых физических смесей полимеров, состоящих из ингредиентов с взаимодополняющим комплексом свойств, не всегда приводит к желаемым результатам из-за термодинамической несовместимости большинства пар полимеров, которая вызвана малой энтропией смешения таких пар.

Поэтому композиции в той или иной мере распадаются на отдельные фазы, характеризующиеся слабой адгезией, что и обуславливает ухудшение свойств композиций.

Необходимым, но недостаточным условием термодинамической совместимости полимеров, является отрицательное значение свободной энергии смешения Gm

(1.1)

Ввиду большой молекулярной массы полимеров изменение энтропии смешения Sm мало, следовательно, чтобы полимеры были совместимыми, изменение энтальпии смешения Нm должно быть или отрицательным, или равным нулю, или иметь очень малое положительное значение.

Согласно развиваемым представлениям лучше всего смешиваются не подобные по строению (составу) ингредиенты, а ингредиенты, в состав которых входят группы, противоположные по функциональности, способные образовывать водородные, донорно-акцепторные ионные, -связи и другие.

Предлагают удобное уравнение для вычисления свободной энергии смешения полимеров.

(1.2)

где gx - средняя свободная энергия смешения полимеров друг с другом, отнесённая к 1г смеси;

G3, G1, G2 - энергии Гиббса смешения полимеров 1,2 и их смеси с общим растворителем соответственно;

- массовые доли полимеров 1 и 2 в ППК.

Во всех случаях смешение является результатом воздействия механического поля на материал, находящийся в рабочей зоне смесителя. Количественное описание любого процесса переработки полимеров в вязкотекучем состоянии, в том числе и смешение, основано на реологических уравнениях, характеризующих наиболее существенное свойство перерабатываемых материалов - вязкость. В экструдере загруженные компоненты подвергаются сложным воздействиям за счёт сдвига и изменения температурного профиля вдоль цилиндра экструдера. Вязкость и соотношение вязкостей фаз изменяется в зависимости от температуры в процессе перемещения материала вдоль шнека, и диспергирование может произойти на различных стадиях экструзии. Изучение влияния различных факторов на структуру и как следствие, на свойства полимер-полимерных систем позволит направленно регулировать ряд характеристик полимер-полимерной системы [10].

1.7 Продукты деструкции вторично переработки полиолефинов

В процессе переработки и эксплуатации материал подвергается механохимическим воздействиям, термической, термо- и фотоокислительной деструкции.

К реакциям деструкции относятся реакции, протекающие с разрывом валентностей основной молекулярной цепи и с уменьшением молекулярной массы полимера без изменения его химического состава. При этом не учитываются концевые группы макромолекулы, составляющие очень малую ее долю.

По характеру продуктов распада различают деструкцию по закону случая и деполимеризацию. Первый вид деструкции в известной степени напоминает процесс, обратный реакции поликонденсации, при этом образующиеся осколки велики по сравнению с размером мономерного звена. При деполимеризации, вероятно, имеет место последовательный отрыв мономеров от конца цепи, т.е. реакция обратная росту цепи при полимеризации. Эти два вида деструкции могут протекать раздельно или одновременно [15].

При деструкции по закону случая молекулярная масса полимера обычно падает очень быстро, а при деполимеризации - значительно медленнее.

При эксплуатации полимерные материалы обычно подвергаются одновременному действию различных факторов, вызывающих деструкцию.

При кинетических исследованиях деструкции обычно определяют зависимость среднечисловой молекулярной массы от времени реакции, поскольку изменение числа молекул в единице времени пропорционально количеству разорванных связей. Установив химическими методами количество новых функциональных групп, появившихся при деструкции, можно непосредственно найти число разорванных связей. Если деструкция приводит к образованию свободных радикалов, то предварительно смешивают полимер с ингибитором, и по расходу ингибитора определяют количество разорванных связей (при каждом разрыве возникают два радикала, которые реагируют с ингибитором).

Склонность полимера к деструкции и характер этого процесса зависят не только от термодинамических, но также от кинетических факторов и от механизма деструкцию. В реакциях деструкции макромолекула участвует как одна целая частица, распадающаяся при разрыве любой связи на две самостоятельные кинетические частицы. Прочность связей в макромолекуле и скорость разрыва не зависят от степени полимеризации.

Деструкция высокомолекулярных соединений отличается от аналогичного процесса у низкомолекулярных веществ тем, что она, как правило, не приводит к образованию новых типов соединений [11].

1.7.1 Окислительная деструкция

Окислительная деструкция полимеров начинается в результате взаимодействия макрорадикалов с кислородом и озоном воздуха и активируется тепловой, световой и механической энергией; соответственно различают термо-, фото- и механоокислительные процессы. В реальных условиях эксплуатации полимеров процесс окисления сопровождается и тепловым, и световым, и механическим воздействиями. Свободные макрорадикалы в твердом полимере остаются после прекращения реакции полимеризации или они возникают под влиянием фотолиза, радиолиза, химического или механического воздействия. В твердом полимере их подвижность мала, и скорость их реакции с кислородом обычно больше скорости рекомбинации [15].

Скорость окислительной деструкции определяется скоростью диффузии кислорода в полимер и скоростью химического взаимодействия полимера с кислородом. Скорость диффузии кислорода в полимер наиболее высока, если полимер находится в растворе или расплаве. Полимеры, набухающие в воде, быстрее подвергаются окислительной деструкции, так как в этом случае также возрастает скорость диффузии кислорода в полимер. Чем выше степень кристалличности полимера, тем ниже скорость диффузии кислорода.

Окислительная деструкция насыщенных полимеров протекает медленнее по сравнению с ненасыщенными и может сопровождаться начальным возникновением перекисей; получающиеся при этом макрорадикалы могут давать полимерные перекиси, разлагаться с одновременным разрывом цепи, стабилизироваться путем рекомбинации диспропорционирования.

Рекомбинация макрорадикалов в твердом полимере протекает очень медленно, если процесс не активируется повышением температуры. Однако рекомбинация макрорадикалов с перекисными концевыми группами происходит с достаточно высокой скоростью, что объясняю: передачей кинетической цепи вдоль макрорадикала.

Склонность полиолефинов к окислению, их реакционная способность в реакциях окисления определяются структурой звеньев и плотностью упаковки макромолекул в полимере.

Полиэтилен при нагревании на воздухе окисляется медленно. Под влиянием света скорость реакции окисления резко увеличивается. Поглощение кислорода вызывает вначале понижение молекулярного веса полимера и температуры его размягчения. При нагревании частично окисленного полиэтилена молекулярный вес начинает увеличиваться в результате соединения макромолекул кислородными мостиками. Процесс старения полиэтилена сопровождается изменением не только химического состава макромолекул, но и их структуры. Скорость окисления полиэтилена несколько выше скорости окисления низкомолекулярных парафинов, что, очевидно, связано с наличием в его макромолекулах небольшого количества карбонильных и винильных звеньев. Световое воздействие приводит к разрушению макромолекул в тех местах, где находятся карбонильные группы.

Чем выше степень разветвленности полиэтилена, тем меньше его стойкость к действию кислорода из-за высокой концентрации -водородных атомов в макромолекуле. Одновременно с увеличением степени разветвленности возрастает объем аморфной фазы в полиэтилене, где развивается процесс окисления.

Разрушение полипропилена кислородом воздуха проходит с большей скоростью, чем полиэтилена. Только при кратковременном нагревании полипропилена до 250-З00°С в присутствии антиоксидантов можно предотвратить его деструкцию и ухудшение механических свойств. Процесс старения полипропилена под действием тепла и света аналогичен старению полиэтилена: вначале преобладают процессы деструкции, и длина цепей полимера уменьшается, затем начинают развиваться процессы межмолекулярного взаимодействия, приводящие к полной потере эластичности и пластичности.

Частичное окисление часто является целенаправленным процессом модификации свойств полиолефинов. Наличие кислородсодержащих групп в составе полиолефинов повышает адгезионное взаимодействие полимерных пленок с защищаемыми поверхностями и адсорбцию азокрасителей, придает изделиям стойкость к окислительной деструкции под влиянием кислорода воздуха, увеличивает жесткость и деформационную устойчивость. В процессе окисления в полимере возникают группы, облегчающие прививку к нему другого полимера. Окислению целесообразно подвергать поверхностные слои готового изделия, применяя в качестве реагента смесь кислорода с озоном. В процессе направленного (контролируемого) окисления в полиолефинах появляются карбоксильные и гидроперекисные группы. Карбоксильные и гидроперекисные группы могут инициировать привитую сополимеризацию [16].


Подобные документы

  • Пирометаллургическая технология получения вторичной меди. Распределение основных компонентов вторичного медного сырья по продуктам шахтной плавки. Шлаки цветной металлургии. Перспективы применения центробежно-ударной техники для переработки шлаков.

    реферат [25,8 K], добавлен 13.12.2013

  • Обеззараживание и переработка медицинских отходов. Новая технология уничтожения медицинских отходов. Метод термического обезвреживания медицинских отходов в Москве. Классификация медицинских отходов по эпидемиологической и токсической опасности.

    курсовая работа [1,7 M], добавлен 03.03.2010

  • Высокие темпы производства полиуретанов: экономические и экологические проблемы. Основные способы вторичной переработки полиуретанов: физическая переработка материала, химическая переработка и рекуперация энергии. Синтез полиуретанов: вторичные полиолы.

    реферат [593,3 K], добавлен 18.02.2011

  • Характеристика сырья, продукции и вспомогательных материалов при переработке нефти. Описание технологической схемы. Оборудование, контрольно-измерительные приборы и автоматизация. Расчет капитальных затрат проекта, численности песонала и оплаты труда.

    дипломная работа [351,9 K], добавлен 01.06.2012

  • Экономия ресурсов, снижение вредного воздействия на экологию и утилизация отходов потребления как основная цель получения алюминия из вторичного сырья. Потенциальные источники вторичного алюминия в России, инновационные способы его производства.

    курсовая работа [560,7 K], добавлен 29.09.2011

  • Переработка рисового зерна в крупу. Химическое содержание рисовой шелухи. Способы использования рисовой шелухи. Технологические схемы выделения чистого кремнезема. Переработка отходов рисового производства для получения аморфного диоксида кремния.

    статья [991,8 K], добавлен 05.10.2017

  • Характеристика технологического оборудования, описание процесса переработки резины. Расчет режимного и эффективного фонда работы оборудования. Требования безопасности при эксплуатации установок. Характеристика опасных и вредных производственных факторов.

    курсовая работа [80,0 K], добавлен 02.01.2012

  • Технико-экономическое обоснование производства. Характеристика готовой продукции, исходного сырья и материалов. Технологический процесс производства, материальный расчет. Переработка отходов производства и экологическая оценка технологических решений.

    методичка [51,1 K], добавлен 03.05.2009

  • Изучение технологии производства слюдопластовых электроизоляционных материалов, образование отходов при производстве слюдопластовой бумаги. Технологические и экономические расчеты для установки по переработке отходов слюдопластового производства.

    дипломная работа [5,2 M], добавлен 30.08.2010

  • Определение объемов заготовки древесины по сезонам года и породам потенциальных ресурсов древесных отходов на лесосеках и погрузочных пунктах. Выбор машин, механизмов на заготовке и переработке древесного сырья на щепу и расчет их производительности.

    курсовая работа [88,2 K], добавлен 17.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.