Системы автоматического регулирования авиационных двигателей
Вывод дифференциального уравнения дроссельной иглы. Построение схемы и понятие передаточных функций системы автоматического регулирования перепада давления топлива на дроссельном кране. Проверка устойчивости САР по критериям Найквиста и Рауса-Гурвица.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 18.09.2012 |
Размер файла | 755,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Задание
Рис.1 Принципиальная схема САР перепада давления топлива на дроссельном кране
- перепад давления на дроссельном кране (РП);
- расход топлива через дроссельный кран (РФ);
- перемещение золотника дроссельного крана (ВВ);
- настройка пружины чувствительного элемента (УВ);
- изменение давление на выходе из насоса (ВВ).
При выводе уравнений предполагается: силы сухого трения и гидродинамические силы пренебрежимо малы; жидкость несжимаема; давление на выходе из дроссельного крана - постоянное, .
Исходные данные для расчёта
k1 |
k2 |
k3 |
k4 |
k5 |
k6 |
k7 |
k8 |
T1 |
T2 |
||
2 |
1 |
0,5 |
1 |
0,3 |
0,5 |
- |
0,5 |
0,3 |
0,12 |
0,4 |
D-разбиение - k7;
Воздействие - ;
Критерии устойчивости - Р - Г; Н.
Содержание
- Введение
- 1. Назначение и принцип действия САР
- 2. Вывод дифференциального уравнения дроссельной иглы
- 3. Построение структурной схемы и определение передаточных функций САР
- 4. Анализ устойчивости САР
- 5. Оценка качества регулирования САР
- Заключение
- Список литературы
Введение
К системам автоматического регулирования (САР) авиационных двигателей предъявляются весьма жёсткие требования по статическим и динамическим характеристикам, поэтому важен выбор параметров САР, обеспечивающих заданные характеристики, и анализ влияния отдельных параметров на динамические свойства САР.
1. Назначение и принцип действия САР
САР состоит из объекта регулирования - дроссельного крана и гидромеханического регулятора перепада давления (рис.1).
При уменьшении площади дроссельного крана перепад давления на нем возрастает. Золотник чувствительного элемента переместиться вверх и соединит надпоршневую полость с магистралью , а подпоршневую полость - с магистралью . Дроссельная игла с поршнем переместиться вниз и уменьшит расход топлива . При этом перепад давления на дроссельном кране восстановится.
2. Вывод дифференциального уравнения дроссельной иглы
При выводе уравнения предполагается: силы сухого трения и гидродинамические силы пренебрежимо малы; жидкость несжимаема; давление на выходе из насоса - постоянное, .
Уравнение дроссельной иглы, связывающее массовый расход топлива с перемещением дроссельной иглы, определяется зависимостью
- объемный расход топлива;
- коэффициент расхода дросселя ();
- площадь проходного сечения;
- плотность жидкость ();
- давления на входе в дроссельную иглу и выходе из насоса.
Нелинейная расходная характеристика дроссельной иглы линеаризуется разложением в ряд Тейлора:
,
где .
Относительное приращение площади проходного сечения дроссельной иглы связано с относительным его перемещением зависимостью:
.
Из совместного решения уравнений можно определить линеаризованное уравнение дроссельной иглы:
,
где ; ; - коэффициенты передачи дроссельной иглы.
3. Построение структурной схемы и определение передаточных функций САР
Уравнения звеньев САР сводятся в систему уравнений:
- объект регулирования;
- чувствительный элемент;
- сервопоршень;
- дроссельная игла;
- баланс расходов.
Система уравнений содержит 8 переменных (, , , , , , , ), т.е. за исключением управляющего и возмущающего и воздействий число переменных равно числу уравнений. Система дифференциальных уравнений записывается в операторной форме и преобразуется к форме, удобной для построения структурной схемы САР. Для этого из системы операторных уравнений исключаем параметры как входящие в простые зависимости. В результате получаем:
В структурном виде эти уравнения могут быть изображены следующим образом:
Рисунок 2. Составляющие структурной схемы САР
Структурная схема САР, соответствующая системе преобразованных операторных уравнений, представлена на рисунке 3. По структурной схеме легко прослеживается взаимодействие звеньев в системе регулирования перепада давления топлива на дроссельном кране.
Рисунок 3. Структурная схема САР
Для определения передаточной функции САР в разомкнутом состоянии в структурной схеме условно размыкается основная обратная связь и вводится входной и выходной параметры разомкнутой системы. Тогда передаточная функция разомкнутой САР определяется как отношение:
При этом предполагается: ;;.
После преобразования можно получить:
,
;
;
;
;
.
Передаточная функция замкнутой САР по управляющему воздействию (при и ) определяется по формуле:
После преобразования можно получить:
,
;
;
;
;
.
Собственный оператор замкнутой САР имеет вид:
4. Анализ устойчивости САР
Построим D-разбиение в плоскости параметра k7 . Решаем уравнение :
.
Подставляя в данное уравнение значения всех коэффициентов и численные значения параметров САР (см. задание) и решая его относительно коэффициента k7, получаем следующее выражение:
Воспользовавшись программой RADIS, определим действительную и мнимую составляющие частотной функции k7 для ряда значений частот. В результате расчёта и построения получаем кривую D-разбиения для положительных значений частот (рис.5).
Рисунок 5. D - разбиение в плоскости коэффициента k7: I - область наибольшей вероятности устойчивой работы; II, III - области неустойчивой работы САР
Кривая D-разбиения заштриховывается с левой стороны по мере возрастания частоты колебаний. Воспользовавшись правилом подсчёта корней характеристического уравнения для каждой из выделенных областей D- разбиения определяем область I , соответствующую наибольшему числу корней с отрицательной вещественной частью, т.е. более вероятную область устойчивости САР.
Для проверки устойчивости САР в области I зададимся величиной Re k7 , взятой из этой области: k7=0, и запишем характеристический полином или собственный оператор замкнутой САР с числовыми значениями коэффициентов:
.
Для проверки устойчивости САР по критерию Рауса-Гурвица составим квадратную матрицу Гурвица из коэффициентов a0…an:
при проанализируем знаки диагональных миноров:
;
;
.
Все диагональные миноры положительны, следовательно, САР устойчива и область I D-разбиения является областью устойчивости САР.
Для проверки устойчивости по критерию Найквиста анализируется АФЧХ разомкнутой системы. Передаточная функция разомкнутой САР при принятых значениях коэффициентов имеет вид:
;
Вначале определяется устойчивость системы. Для этого используется собственный оператор разомкнутой САР с числовыми значениями коэффициентов:
Воспользовавшись программой RADIS, рассчитывается и строится АФЧХ разомкнутой САР. Из представленного на рис. 6 графика следует, что АФЧХ разомкнутой САР не охватывает точку с координатой (-1;j0), следовательно, замкнутая САР будет устойчива.
Рисунок 6. Амплитудно-фазочастотная характеристика разомкнутой САР частоты вращения ГТД
5. Оценка качества регулирования САР
Качество регулирования САР определяется по показателям качества переходного процесса при ступенчатом управляющем и возмущающем воздействиях. Переходные характеристики рассчитываются по алгоритму и программе RADIS.
При заданных исходных данных передаточная функция замкнутой САР при управляющем воздействии имеет вид:
Задаваясь тремя значениями коэффициента k7 из области устойчивости D- разбиения, например, k7 =2; 4; 6, определяем переходные характеристики при ступенчатом возмущающем воздействии . Переходные характеристики рассчитываем по последнему выражению с использованием программы RADIS. Шаг интегрирования принимаем равным с, время интегрирования с.
Рисунок 7. Переходные характеристики САР частоты вращения авиационного ТРД (а - при k7 =2, б - при k7 =3, в - при k7 =4)
Из анализа графических зависимостей следует, что увеличение коэффициента усиления звена k7 в прямой цепи регулирования САР приводит к колебательному переходному процессу и в тоже время к снижению статической погрешности поддержания заданного расхода топлива через дроссельный кран. Изменяя коэффициент k7, можно добиться приемлемых показателей качества регулирования. Так, например, при k7 = 3 будут следующие показатели качества регулирования: - максимальная величина перерегулирования;
с - время регулирования, в течение которого заканчивается переходный процесс (при допуске ±5% от );
N = 2 - число периодов колебаний за время переходного процесса;
с-1 - угловая частота собственных колебаний.
Заключение
автоматический давление дроссельный игла
Анализ устойчивости системы автоматического регулирования перепада давления топлива на дроссельном кране показал, что данная САР устойчива и область D-разбиения является областью устойчивости САР. Это подтвердили проверки устойчивости САР по критерию Найквиста и критерию Рауса-Гурвица.
Список литературы
Гимадиев А.Г. Динамические характеристики систем автоматического регулирования: Учебное пособие. - Куйбышев: КуАИ, 1986 - 60с.
Шорин В.П. Системы автоматического регулирования энергетических установок: Методическое пособие. - Куйбышев: КУАИ , 1986 - 39с.
Размещено на Allbest.ru
Подобные документы
Описание устройства работы системы автоматического регулирования температуры поливной воды в теплице, определение передаточных функций системы по управляющему и возмущающему воздействиям. Анализ устойчивости системы по критериям Гурвица и Найквиста.
курсовая работа [1,5 M], добавлен 15.09.2010Характеристика объекта управления (барабана котла), устройства и работы системы автоматического регулирования, ее функциональной схемы. Анализ устойчивости системы по критериям Гурвица и Найквиста. Оценка качества управления по переходным функциям.
курсовая работа [755,4 K], добавлен 13.09.2010Определение устойчивости стационарных и нестационарных линейных непрерывных и дискретно-непрерывных САР по критериям Гурвица, Раусса, Михайлова, Ляпунова и Шур-Кона. Построение годографа Найквиста для разомкнутой системы автоматического регулирования.
контрольная работа [844,4 K], добавлен 09.03.2012Функциональная и структурная схемы САР. Оценка устойчивости системы по корням характеристического уравнения, критериям Михайлова, Найквиста и Гурвица. Построение переходных процессов. Показатели качества САР. Оценка точности процесса регулирования.
курсовая работа [2,3 M], добавлен 01.12.2014Функциональная схема системы автоматического регулирования температуры приточного воздуха в картофелехранилище. Определение закона регулирования системы. Анализ устойчивости по критериям Гурвица и Найквиста. Качество управления по переходным функциям.
курсовая работа [366,2 K], добавлен 13.09.2010Динамические свойства объекта регулирования и элементов системы автоматического регулирования. Определение параметров типового закона регулирования. Параметры передаточных функций. Параметры процесса регулирования на границе устойчивости системы.
контрольная работа [1,3 M], добавлен 07.08.2015Характеристика объекта управления, описание устройства и работы САР, составление её функциональной схемы. Изучение принципа работы системы автоматического регулирования температуры воздуха. Определение передаточных функций системы и запасов устойчивости.
курсовая работа [633,3 K], добавлен 10.09.2010Построение структурной схемы нескорректированной системы и определение передаточных функций звеньев. Построение логарифмических амплитудно-частотных характеристик для исходной системы. Синтез и моделирование последовательного корректирующего устройства.
курсовая работа [90,6 K], добавлен 21.12.2010Определение передаточных функций и переходных характеристик звеньев системы автоматического управления. Построение амплитудно-фазовой характеристики. Оценка устойчивости системы. Выбор корректирующего устройства. Показатели качества регулирования.
курсовая работа [347,1 K], добавлен 21.02.2016Разработка принципиальной схемы системы автоматического регулирования, описание ее действия. Определение передаточной функции и моделирование, оценка устойчивости по разным критериям, частотные характеристики. Разработка механизмов управления и защиты.
курсовая работа [1,1 M], добавлен 14.11.2013