Технология производства листового стекла

История возникновения стеклоделия в Кыргызстане и за рубежом, принципы, на которых оно построено. Технологии изготовления стекла, его характеристика, виды, свойства, резка и упаковка. Применение листового стекла в сфере производства и потребления.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 26.04.2011
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Марблиты изготавливают самых разных цветов и преимущественно глушеными: желтые, молочные, кремовые, зеленые, розовые, а также мраморовидные и др.

Стемалит -- листовое стекло толщиной 5... 12 мм различной фактуры, покрытое с одной стороны силикатной краской и подвергнутое термообработке для упрочнения стекла и закрепления краски на его поверхности.

Стемалит резке не поддается. Его изготавливают из оконного стекла различных цветов: черного, белого, синего и др., используя, эмалевые краски. Стемалит применяется для наружной и внутренней облицовки зданий, изготовления многослойных навесных панелей. Размер панели стемалита 3,2x1,2 м и более, площадь -- 3,8...7 м2.

Узорчатое стекло -- это листовое прокатное бесцветное или цветное стекло, имеющее по всей поверхности на одной или обеих сторонах рельефный закономерно повторяющийся узор Сочетая в себе свойства светорассеивания и богатые декоративные качества, узорчатое стекло позволяет создавать выразительные интерьеры. Применяют для остекления дверей, мебели и других объектов, где не допускается сквозная видимость и требуется рассеянное освещение. Стекло выпускается толщ. 4, 5 и 6 мм. 1200x2500 мм.

Стекло «мороз» изготавливают из листового оконного или витринного неполированного стекла путем специальной обработки, в результате которой на поверхности образуется узор. Его выпускают в виде листов толщ. 4 и 5 мм с 1000x1800 мм. Применяют для остекления внутренних и наружных световых проемов.

Стекло «метелица» получают методом формования ленты на расплаве металла -олова. Оно может быть бесцветным, цветным. Одна поверхность стекла термически полированная, другая имеет неповторяющийся узор в виде выступающих над поверхностью листа волнистых участков, характер и регулярность которых могут быть заданы при производстве. Узор из линий может быть окрашен или на поверхность может быть напылен металлический зеркальный слой. Размер выпускаемых листов «метелица» 1900x800 мм и 1500x800 мм при толщине 6,5 мм. Используется для остекления дверей, перегородок, а также для декоративной отделки интерьеров.

Глава 2. Технология производства листового стекла

§ 2.1 Процесс формирования шихты с новейшими оборудованиями

К составам листового оконного стекла5 предъявляется ряд требований:

1. высокая скорость варки;

2. оптимальная скорость твердения, для обеспечения высокой скорости формования;

3. температура кристаллизации должна быть ниже температуры формования;

4. низкая склонность расплава к кристаллизации;

5. придание стеклу необходимых физико-механических свойств и химической устойчивости.

Современное листовое стекло в своем составе имеет следующие оксиды

SiO2, Na2O, Al2O3, CaO, MgO, Fe2O3, SO3.

Для производства листового стекла используют шихту.

Шихта представляет собой однородную увлажненную смесь предварительно подготовленных сырьевых материалов, составленную в соответствии с заданным рецептом. Рецепт шихты рассчитывается ЦЛ исходя из заданного состава стекла с учетом химического состава сырьевых материалов (кварцевого песка, кальцинированной соды, доломита, карбоната кальция, полевого шпата, сульфата натрия, гранулированного угля).

Увлажнение шихты до 4 - 5% уменьшает пыление и предупреждает или уменьшает расслоение шихты при ее хранении и транспортировании.

Массовая доля влаги в шихте после смешивания, % - 5,0 + 0,2

Массовая доля влаги в шихте на загрузочных карманах ЛТФ-1,2,4, % - 4,6+0,1

В процессе стекловарения происходит угар шихты. Величина угара шихты составляет 17%, соответственно коэффициент угара равен 0,83.

Шихту загружают в печь, где из нее при соответствующей температуре получают расплав - стекломассу, которую выдерживают в печи достаточное время для того, чтобы она приобрела необходимую однородность. Затем температуру расплава снижают. Это увеличивает его вязкость и дает возможность формовать ленту стекла. После формования ленту стекла подвергают термической обработке, которую проводят медленно и постепенно (отжиг). Окончательная обработка изделий предусматривает резку ленты стекла на заданные размеры и упаковку готового стекла.

Сырьевые материалы

Сырьевые материалы, применяемые для производства стекла, условно делят на основные и вспомогательные.

На ОсОО «Интерглаз» для приготовления шихты используются следующие сырьевые материалы: песок, карбонат кальция, доломит, полевой шпат, сода, сульфат натрия, уголь.

К основным сырьевым материалам для производства листового стекла относятся кварцевый песок, сода, доломит, полевой шпат, карбонат кальция. К вспомогательным сырьевым материалам относится сульфат натрия, уголь.

Кремнезем SiO2 - главная составная часть всех силикатных стекол. SiO2 повышает вязкость стекломассы, улучшает механические и химические характеристики, повышает тугоплавкость стекла и затрудняет его гомогенизацию, уменьшает показатель преломления, температурный коэффициент линейного расширения и плотность, повышает термостойкость, увеличивает склонность к кристаллизации. Для введения SiO2 используется кварцевый песок. На ОсОО «Интергласс» применяется песок марок ВС-040 1, ВС-050-1, С-070-1.

Оксид натрия Na2O (плавень) наряду с кремнеземом является важнейшей составной частью стекла.

Na2O ускоряет стеклообразование, понижает температуру плавления и вязкость стекла, облегчает процесс осветления. Вместе с тем, Na2O повышает плотность и температурный коэффициент линейного расширения, снижает химическую устойчивость и микротвердость стекла. Сырьевыми материалами, посредством которых в стекло вводится Na2O, являются сода (Na2СО3) (ГОСТ 5100-85) и сульфат натрия (Na2SO4) (ТУ 21-249-00204168-92). Сода может быть тяжелая и легкая. На ОсОО «Интергласс» используется тяжелая сода.

Преимущества тяжелой соды:

1) лучшая теплопроводность за счет меньшей пористости, поэтому быстрее, легче и полнее происходит расплавление шихты;

2) большая объемная масса, что уменьшает пыление соды, шихты;

3) малая гигроскопичность, в связи с чем снижается опасность получения шихты нестабильного состава;

4) меньшая склонность к комкованию и расслоению, что способствует получению однородной шихты.

Легкая сода - имеет высокую дисперсность частиц соды (менее 0,1мм) что ведет к пылению, способствует расслоению шихты, ухудшает условия труда, ускоряет износ стекловаренной печи и т.д.

Оксид магния MgO вводят в состав стекла доломитом (MgCO3 x CaCO3) (ГОСТ 23672-79). МgО уменьшает температуру плавления стекломассы и склонность к кристаллизации при концентрации до 6% (с увеличением концентрации температура плавления и склонность к кристаллизации повышаются), повышает поверхностное натяжение. При содержании в стекле более 2% оксида магния время провара и осветления увеличивается. Несколько снижает устойчивость стекла к действию воды. Повышает температурный коэффициент линейного расширения, но меньше, чем СаО.

Оксид кальция CaO вводят в состав стекла карбонатом кальция (CaCO3) (ТУ 113-08-667-98) . СаО снижает температуру плавления и вязкость, улучшает механические и химические свойства, но усиливает склонность к кристаллизации, повышает плотность.

Оксид алюминия Al2O3 вводят в состав стекла Оксид алюминия Al2O3 (ТУ5726-036-00193861-96). Al2O3 повышает температуру плавления, вязкость и температуру размягчения, повышает поверхностное натяжение, ухудшая проваривание стекломассы и ее гомогенизацию, увеличивает химическую стойкость, улучшает механические свойства и теплопроводность, уменьшает температурный коэффициент линейного расширения и агрессивность расплава, снижает склонность стекла к кристаллизации.

Установлено, что оптимальными для стекловарения являются кварцевые пески с размером зерен от 0,1 до 0,4мм. Согласно требованиям ГОСТ 22551-77, содержание зерен крупностью более 0,8мм в обогащенных стекольных песках не должно превышать 0,5%, а в природных - 5%. Для зерен размером менее 0,1мм эти показатели составляют соответственно 5 и 15%. Для доломита требования к гранулометрическому составу следующие - от 0,6 1,0мм не более 5%; менее 0,1мм не более 10%. Для полевого шпата - более 0,8мм не допускаются вообще; от 0,7 до 0,8мм не более 5%; менее 0,06мм не более 5%.

Если размеры зерен сырьевых материалов будут больше 0,8мм, то во время варки стекла могут появиться непровары, т.к. крупные зерна провариваются трудно и медленно. Пылевидные зерна - комкуются и в такой стекломассе много «мошки».

Обработка сырьевых материалов и подготовка шихты осуществляется в производстве подготовки шихты № 10.

стеклоделие листовой кыргызстан

ТЕХНОЛОГИЧЕСКАЯ СХЕМА ПРОИЗВОДСТВА ПОДГОТОВКИ ШИХТЫ

Примечание - Транспортирование шихты: на загрузочные площадки ванных стекловаренных печей ЛТФ-1, ЛТФ-2, ЛТФ-4 - ленточными конвейерами;

На ОсОО «Интергласс» вырабатывают стекло следующего химического состава:

-SiO2 - 72,7 +0,2 %

-Al2O3 - 1,0 +0,05 %

-СаО - 8,8 +0,2 %

-MgO - 3,7 +0,2 %

-Na2O - 13,3 +0,1 %

-Fe2O3 - не более 0,1%

-SО3 - не более 0,4%

Поступающие на предприятие сырьевые материалы взвешиваются на вагонных весах для взвешивания в движении. Входной контроль качества сырьевых материалов осуществляется бюро внешней приемки ОТК. Сырьевые материалы хранятся в предназначенных для каждого из них складах, отсеках, силосах. В зимнее время мерзлый песок перед выгрузкой предварительно рыхлится в полувагоне бурорыхлительной установкой.

Обработка песка

Из железнодорожного транспорта или отсеков склада кварцевый песок грейферным краном подается в приемные бункера отделений сушки песка для ЛТФ-1,2 и ЛТФ-6 (в каждом отделении имеется по две линии обработки песка). В зимнее время производится предварительный разогрев песка на решетке бункера с помощью газовых горелок. Из приемных бункеров песок поступает на лотковый питатель, предназначенный для равномерной подачи песка на ленточный конвейер. По ленточному конвейеру песок поступает в сушильные барабаны, которые отапливаются природным газом. Температура отходящих газов должна быть не более 150оС, а температура песка, выходящего из сушильного барабана, должна быть не более 100оС. Из сушильных барабанов песок по течке поступает для просева на грохот. Просеянный песок поступает в расходные бункера дозировочных линий, из которых затем поступает на весовые дозаторы линий дозирования. Из весового дозатора песок проходит через страховочную сетку поступает на сборочный ленточный конвейер.

Отсевы песка, как после сушильных барабанов, так и после грохотов ссыпаются на складе в специально отведенное место в соответствии с утвержденной схемой склада. Затем грейферным краном грузятся в полувагоны и вывозятся со склада. Отсевы песка с участка ЛТФ подвергаются повторной обработке на участке ДСО. Применение отсевов песка, после повторного просева на участке ДСО, в производстве шихты не допускается.

Поступающие на предприятие мел, сульфат натрия, полевой шпат, кальцинированная сода, гранулированный уголь дополнительной обработке не подвергаются.

Подготовка шихты для линий ЛТФ-1,2,4

Шихта представляет собой однородную увлажненную смесь, полученную при смешивании дозированных обработанных сырьевых материалов (кварцевого песка, кальцинированной соды, доломита, мела, полевого шпата, сульфата натрия, гранулированного угля).

Технологический процесс подготовки шихты производится на дозировочно-смесительных линиях. Дозирование компонентов шихты производится в соответствии с циклограммой отвеса шихты, рассчитанной согласно заданному химическому составу стекла и химическому анализу сырьевых материалов в соответствии с СТП-307.

Подача шихты на стекловаренные печи должна производиться ритмично в соответствии с заданным уровнем стекломассы в ванных печах и съемом стекломассы.

Давление компрессорного воздуха на линии дозирования должно быть 5 кгс/см2.

Воздух должен быть осушен, точка росы должна быть не выше минус 20оС.

Технологическая схема подготовки шихты:

Дозирование компонентов шихты

Транспортирование их в смеситель

Увлажнение, смешивание компонентов шихты

Выгрузка из смесителя

Транспортирование готовой шихты в бункер-накопитель

Транспортирование шихты к загрузочным карманам ванных печей

Дозирование стеклобоя на шихту

Подача смеси шихта-стеклобой в загрузочные карманы ванных печей

Подготовка шихты производится для линий:

-ЛТФ-1,2 на ДСЛ-1 и ДСЛ-2 на участке ДСО-1;

-ЛТФ-4 на ДСЛ-1 на участке ДСО-2.

В состав шихты для линий ЛТФ-1,2,4 входит гранулированный уголь, который выполняет роль восстановителя при стекловарении.

ДСЛ оборудованы автоматическими дозаторами с тензометрическими датчиками.

Приготовление отвесов шихты осуществляется в соответствии с циклограммой работы ДСЛ. Циклограмма отвеса шихты включает:

- время дозирования компонентов шихты;

- время разгрузки компонентов шихты в смеситель;

- время смешивания;

- порядок разгрузки компонентов шихты.

Просыпание материалов на пути движения сборочного ленточного конвейера не допускается.

Смешивание и транспортировка шихты

Дозированные по заданному рецепту компоненты шихты сборочным ленточным конвейером подаются в смеситель, где они смешиваются и увлажняются. Время смешивания шихты - согласно циклограмме. Вода для увлажнения подается на песок. Включение и выключение насосов для подачи воды производится автоматически в соответствии с циклограммой и заданной влажностью шихты. По истечении времени смешивания в соответствии с циклограммой производится разгрузка смесителя. Из смесителя готовая шихта с помощью винтовых конвейеров и элеваторов подается в бункер-накопитель шихты.

Из бункера-накопителя шихта подается в загрузочные карманы ЛТФ-1,2,4 по ленточным конвейерам с автоматическим дозированием обработанного стеклобоя. В процессе транспортировки шихта подвергается очистке от металлических включений с помощью электромагнитных сепараторов.

Ритмичность загрузки смеси шихта-стеклобой в загрузочные карманы ванных печей ЛТФ-1,2,4 регулируется датчиками управления уровнем смеси шихта-стеклобой.

Допустимые отклонения дозирования компонентов шихты не должны превышать следующих значений:

Наименование компонента

Допустимые отклонения, в %

1. Кварцевый песок

+ 0,25

2. Полевой шпат

+ 0,5

3. Карбонат кальция (мел)

+ 0,5

4. Доломит

+ 0,5

5. Кальцинированная сода

+ 0,5

6. Сульфат натрия

+ 0,5

7. Гранулированный уголь

+0,1

§ 2.2 Стекловаренная печь

Варка стекла производится в ванной регенеративной стекловаренной печи непрерывного действия с поперечным направлением пламени, отапливаемой природным газом, с удельным съемом стекломассы с отапливаемой части:

-для ЛТФ-2 1899,1 кг/м2,

Фактическая производительность стекловаренной печи на ОсОО «Интергласс»:

-на ЛТФ-2 350 т/сут;

Расчет количества сваренной стекломассы

По количеству засыпанной шихты и стеклобоя в стекловаренную печь:

Q = количество шихты(тн) х коэф.угара + количество стеклобоя (тн), (тн)

Пример

В стекловаренную печь засыпали за сутки 290тн шихты и 67тн стеклобоя

Угар шихты = 17,08%

Коэффициент угара = (100 - 17,08) : 100 = 0,8292

Q = 290 х 0,8292 + 67 = 307,468тн

По вытянутому стеклу:

Q = вытянуто стекла (м2) х толщина (м) х плотность стекла (тн/м3),(тн)

Пример

Скорость выработки = 720м/ч

Ширина ленты стекла с бортами = 1840мм = 1,84м

За сутки вытянуто стекла 720 х 1,84 х 24 = 31795,2м2

Толщина = 3,84мм = 0,00384м

Плотность стекла = 2,5т/м3

Q = 31795,2 х 0,00384 х 2,5 = 305тн

КИС (коэффициент использования стекломассы)

вытянуто(м2) х толщина (м) х плотность(кг/м3)

КИС =

съем (кг) х КИО

КИО - коэффициент использования оборудования

Количество вытянутого стекла с учетом КИС и КИО

съем (кг) х КИС х КИО

Вытянуто = , м2

толщина (м) х плотность (кг/м3)

Пример

Съем составил 310т/сут

КИС = 0,78

КИО = 0,995

Толщина = 3мм

Плотность = 2,5т/м3

310 х 0,78 х 0,995

Вытянуто = = 32079м2

0,003 х 2,5

Рассмотрена ванная печь непрерывного действия. Тип печи-регенеративная ,проточная с подковообразным направлением пламени. Конструктивно печь имеет варочный и выработочный бассейн, соединенные между собой по стекломассе протоком.

Для загрузки шихты и стеклобоя печь оборудована двумя герметизированными загрузочными карманами ,расположенными по ее боковым сторонам.

Выбор удельного съема и расчет основных геометрических размеров печи.

Химический состав стекла:

SiO2-72 %

Fe2O3+AL2O3-2,3 %

Na2O+К2О-14%

CaO+MgO-11,5%

SO3-0,2%

Максимальная температура варки-1500?C

В температурном интервале от 23 до 1500?С вязкость стекол изменяется на 18 порядков. В твердом состоянии вязкость составляет примерно 1019 Па с, в расплавленном состоянии-10 Па с. При низких температурах вязкость меняется незначительно. Наиболее резкое снижение вязкости происходит в интервале 1015-107 Пас.

Определяем основные размеры рабочей камеры.

Площадь варочной части печи, м2:

F=G* 103/g;

Где G-производительность печи, кг/сутки;

g-удельный съем стекломассы с зеркала варочной части, кг/(м2*сут).

Принимаем g=1381 кг/(м2*сут.).

Тогда F=70000/1381=50,68 м2.

Длина варочной части для печи с подковообразным направлением пламени рассчитывается из соотношения

L:B=1,2:1

L:B=1,2

L*B=50,68

1,2*х*х=50,68

х2=50,68:1,2

х=6,5м (ширина B)

6,5*1,2=7,8 м (длинаL)

Соотношение длины и ширины L/B=7,8/6,5=1,2

Ширина пламенного пространства на 120 мм больше ширины бассейна, т.е. 6,5+0,12=6,62 м

Высота подъема свода f=6,62/8=0,83 м.

Длина пламенного пространства 7,8+0,2=8 м.

Глубина бассейна: студочного мм , варочного мм.

Площадь студочной части при температуре варки 1500С принята равной площади варочной части:Fст= 50,68м2.

Ширина студочной части составляет 80% ширины варочной части: 6,5*0,8=5,2 м. Принимаем ширину загрузочных карманов (6,5-0,9)/2=2,8 м, где 0,9 м - ширина разделительной стенки. Длина загрузочного кармана 1 м.

4 Обоснование распределения температур в печи

Термический процесс, в результате которого смесь разнородных компонентов образует однородный расплав, называется стекловарением.

Сыпучую или гранулированную шихту нагревают в ванной печи, в результате чего она превращается в жидкую стекломассу, претерпевая сложные физико-химические взаимодействия компонентов, происходящие на протяжении значительного температурного интервала.

Различают пять этапов стекловарения: силикатообразование, стеклообразование, осветление (дегазация), гомогенизация (усреднение), студка (охлаждение).

Отдельные стадии процесса стекловарения следуют в определенной последовательности по длине печи и требуют создания необходимого температурного режима газовой среды, который должен быть строго неизменным во времени. Распределение температур по длине и ширине ванной печи зависит от свойств стекла и условий варки. При варке темнозеленого стекла температура в начале зоны варки (у загрузочного кармана) 1400-1420?С, так как в этой части бассейна печи происходят нагрев, расплавление и провар шихты, т. е. завершение стадий силикатообразования, стеклообразования и частичное осветление стекломассы. Температура стекломассы у загрузочного кармана 1200-1250?С. В зоне осветления температура газовой среды поддерживается максимальной-1500?С, так как при такой температуре вязкость стекломассы снижается, происходит интенсивное осветление и завершается гомогенизация. В зоне студки температура газовой среды плавно понижается до 1240?С, что приводит к увеличению вязкости стекломассы. В зоне выработки температурный режим устанавливается в зависимости от требований, необходимых для нормальной выработки стекломассы и формования из нее стеклоизделий.

Для установления стационарного температурного режима газовой среды в печи необходимо регулировать количество и соотношение топлива и воздуха, подаваемого в печь, тщательно их смешивать и своевременно отводить отходящие дымовые газы.

Возможность установления определенного температурного режима предусматривается конструкцией ванной печи.

На изменение температурного режима оказывает влияние давление газов в рабочей камере печи. Повышение давления до определенных пределов способствует более равномерному прогреву отдельных частей печи, так как объем рабочей камеры максимально заполняется пламенем. Создание разряжения в печи приводит к уменьшению распространения пламени и присосу холодного воздуха через отверстия. Это ухудшает равномерность распределения температур и вызывает понижение температур в тех участках печи, куда проникает холодный воздух.

Температурный режим печи зависит также и от температуры факела пламени и ее распределения по длине факела. Температура факела регулируется подачей воздуха.

5 Расчет горения топлива, действительной температуры и минимальной температуры подогрева воздуха.факела

Теплоту сгорания топлива определяют по его составу:

Qн=358CH4+637C2H6+912C3H8+1186C4H10;

Qн=358*93,2+637*0,7+912*0,6+1186*0,6=35200 кДж/м3

Уравнения реакций горения составных частей топлива:

CH4+2O2=CO2+2H2O+Q;

C2H6+3,5О2=2СО2+3Н2О+Q;

C3H8+5O2=3CO2+4H2O+Q;

C4H10+6,5O2=4CO2+5H2O+Q.

Коэффициент избытка воздуха L=1,1.

Расчет горения сводим в таблицу:

Состав топлива, %

Содержание газа, м33

Расход воздуха на 1м3 топлива, м3

Выход продуктов горения на 1 м3 топлива,м3

О2Т

О2Д

N2Д

VL

CO2

H2O

N2

O2

CH4-93,2

0,932

1,864

1,96х1,1

2,16х

х3,76

2,16+

+8,10

0,932

1,864

-

-

2,796

С2Р6-0,7

0,007

0,025

0,014

0,021

Из воздуха

Из воздуха

0,035

С3H8-0,6

0,006

0,030

0,018

0,024

8,1

0,2

8,142

C4H10-0,6

0,006

0,039

0,024

0,030

-

-

0,054

N2-4,4

0,044

-

-

-

-

-

-

0,044

-

0,044

СО2-0,5

0,005

-

-

-

-

0,005

-

-

-

0,205

Сумма-100

1

1,96

2,16

8,1

10,26

0,993

1,939

8,144

0,2

11,276

ОиО-расход кислорода соответственно теоретический и действительный, при L=1,1; N- действительный объем азота из воздуха; VL-действительный расход воздуха для горения 1 м3 газа; VД-объем продуктов горения на 1 м3 газа.

Объемный состав продуктов горения, %:

CO2=0,993*100/11,28=8,80

H2O=1,939*100/11,28=17,20

N2=8,144*100/11,28=72,23

O2=0,2*100/11,28=1,77

Сумма-100

Определим расход топлива:

Составим тепловой баланс варочной части печи.

Приходная часть

1.Тепловой поток ,поступающий при сгорании топлива, кВт:

Ф1=QнХ,

где Qн-теплота сгорания топлива,кДж/м3;

Х- секундный расход топлива, м3/с.

Ф1=35200Х кВт.

2. Поток физической теплоты, поступающий с воздухом, кВт:

Ф2=VLcвtвХ,

где VL-расход воздуха для горения 1 м2 топлива,м3;

tв- температура нагрева воздуха в регенераторе-горелке?,С;

св-удельная теплоемкость воздуха при температуре нагрева(данные взяты из приложения), кДж/(м3?С).

Принимаем температуру подогрева воздуха в регенераторе1100?С и повышение температуры в горелкена 50?С. Тогда

Ф2=10,26*1150*1,455=17150Х кВт

Потоками физической теплоты топлива, шихты и боя пренебрегаем ввиду их незначительности.

Общий тепловой поток будет равен:

Фприх.=35200Х+17150Х=52350Х кВт.

Расходная часть

1. На процессы стеклообразования, кВт:

Ф1=ng,

где п- теоретический расход теплоты на варку 1 кг стекломассы, кДж/кг;

g- съем стекломассы, кг/с.

Так как состав стекла и шихты в расчете не учитываются, то по данным Крегера, можно принять расход теплоты на получение 1 кг стекломассы и продуктов дегазации равным 2930 кДж/кг:

g=70*1000/24*3600=0,81 кг/с;

Ф1=2930*0,81=2373 кВт

Площадь стен бассейна. Верхний F1 и средний F2 ряды имеют одну и ту же площадь

F1, F2 =(7,92+1,6)*0,6*2+6,9*0,6=11,42+4,14=15,56 м2.

Складываем площади двух продольных и поперечной стены с учетом площади продольных стен загрузочного кармана.

Нижний ряд F3

F3=(7,92+1)*0,4*2+6,9*0,4=9,89 м2

1) Площадь стен пламенного пространства

Fп.п.=2Fпрод.+Fторц.-Fвл.

Принимаем предварительно высоту стены пламенного пространства равной 1 м.

Fпрод.=8,2*1=8,2 м2.

Площадь Fторц. Определяют по эскизу.

Определяем площади F1,F2,Fк: при этом

Fторц.=F1+F2-2Fк.

Где F1,F2 и Fк - площадь сегмента, прямоугольника и под арками загрузочных карманов.

Для определения площади сегмента применяем упрощенную формулу

Fсегм. =2/3bf,

где b-длина хорды;

f-стрела подъема свода, равная 1,02м.

Тогда

Fсегм.= F1=2/3*7,02*1,2 =5,76м2;

Минимальный срок эксплуатации печи Кашкаев И.С., Шейман Е.Ш. Производство глинянного кирпича. М.: Высшая школа, 1970. - не менее 5 лет. Стекловаренная печь должна быть выполнена:

-с применением рациональной кладки печи из высококачественных огнеупоров: а) дно печи - многошамотные брусья, на которые уложена бакоровая плитка; б) стены бассейна, сыпочная арка, влеты горелок - бакор; в) подвесные стены, свод печи, верхняя часть рубашек регенераторов - динас; г) насадки регенераторов - нижние 6 рядов шамотные, затем 16-18 рядов периклазо-хромитовые и 5-6 рядов периклазо-шпинелидные огнеупоры.

-с изоляцией поверхности варочного бассейна печи;

-с применением средств интенсификации процессов стекловарения, нижний подвод газогорелочных устройств с позонной регулировкой;

-с применением рациональной конструкции студочного бассейна (пережим, холодильник, заглубленный в стекломассу).

Конструкция печи делится на верхнее и нижнее строение. К верхнему строению относятся - бассейн с подвесными стенами и сводом, т.е. варочный бассейн, студочный бассейн, пережим и загрузочный карман. Для разделения варочного и студочного бассейна в качестве разделительного устройства применяют протоки, пережим, холодильники. На печах ОсОО «Интергласс» применяют пережим и холодильники. В наших печах глубина варочного бассейна более 1,5 м не применяется:

-ЛТФ-1 : глубина 1450мм, ширина 9800мм, длина 60200мм;

от 5-ой горелки до пережима 9050мм, длина 44680мм.

К нижнему строению относятся - регенераторы, подрегенеративные камеры, борова, шиберная система, переводные клапаны, каналы для отвода отходящих газов, фундамент и колонны. Регенераторы - камеры для уменьшения потерь тепла, т.е. горячие отходящие газы, проходя через регенератор нагревают кирпичную кладку, которая в свою очередь после перевода пламени отдает тепло проходящему через регенератор воздуху.

Горелки - устройства для приема и смешивания топлива и воздуха и подачи смеси в пламенное пространство и организации факела, а также связывающие элементы между верхним и нижним строениями. На наших печах по 6 пар горелок. Для равномерного нагрева шихты и стекломассы делают перевод пламени с одной стороны на другую :

-на ЛТФ-1,2 через 20 мин

Печь отапливается природным газом.

На наших печах расход газа по зонам следующий:

-на ЛТФ-1 I зона - 1750+50 нм3/ч; II зона - 2150+50 нм3/ч; III зона - 200+30 нм3/ч; общий расход 4240+50 нм3/ч.

Стекловаренная печь оснащена автоматизированной системой управления и контроля.

Варка стекла начинается с загрузки шихты и стеклобоя в стекловаренную печь через загрузочный карман с помощью роторных (ЛТФ-1,2,6) и стольного типа (ЛТФ-4) загрузчиков. Содержание боя составляет 15 - 35%. По мере продвижения вдоль стекловаренной печи под действием высоких температур в шихте происходят различные процессы.

Процесс стекловарения состоит из пяти стадий:

1. силикатообразование;

2. стеклообразование;

3. осветление;

4. гомогенизация;

5. студка.

Силикатообразование - на этом этапе образуются силикаты и другие промежуточные соединения, появляется жидкая фаза за счет плавления эвтектических смесей и солей. Шихта в период нагревания претерпевает изменения. Из нее испаряется влага, обезвоживаются гидраты, разлагаются некоторые соли. Сульфат натрия и кремнезем переходят в другие кристаллические модификации. В процессе полиморфных превращений зерна кварца увеличиваются в объеме и растрескиваются. При температуре 300-400оС начинают взаимодействовать между собой карбонаты и сульфаты образуются промежуточные сложные соединения и жидкие эвтектики. При дальнейшем повышении температур вступают в реакцию песок и глиноземистые материалы, образующие с солями различные силикаты. Одновременно образуется жидкая фаза, с появлением которой протекание реакций резко ускоряется. Возникшие в шихте силикаты и не прореагировавшие компоненты вместе с жидкой фазой образуют к концу этапа плотную спекшуюся массу. Этап завершается при 950 - 1150оС - для стекол обычного состава.

На стадии стеклообразования происходит растворение зерен кварцевого песка в силикатном расплаве и одновременно взаимное растворение силикатов друг в друге. Этот процесс имеет двойную природу - химическую и физико-химическую. Зерна песка растворяются в расплаве с образованием силикатов щелочных материалов, но реакция замедляется из-за накапливания продуктов реакции (силикатов) вокруг зерна кварца. Освобождение зерна кварца от силикатов происходит медленно вследствие движения потоков масс и диффузионных процессов. Скорость стеклообразования зависит от вязкости расплава и поверхностного натяжения. Высокая вязкость затрудняет диффузию, а при увеличении поверхностного натяжения ухудшается смачиваемость зерен песка. На растворение зерен кварца оказывают влияние гранулометрический состав, форма зерен, содержание в зернах кварца примесей. К концу процесса стеклообразования, завершающегося при температурах 1200 - 1250оС, стекломасса становится прозрачной, в ней отсутствуют не проваренные частицы, однако содержится большое количество пузырей и свилей.

Процесс стеклообразования протекает медленнее, чем силикатообразование и составляет 60 - 70% общего времени, затраченного на процесс стекловарения. Скорость процесса стеклообразования зависит от состава стекла и температуры варки.

Осветление -характеризуется выделением из расплава газов, пересыщающих стекломассу после завершения процессов стеклообразования, и протекает при максимальной температуре варки 1560 - 1600оС. Практически на ОсОО «Интергласс» максимальная температура по верхнему строению печи: на ЛТФ1,2 1560оС, на ЛТФ-4 1540оС. Главный источник газов - шихта, в которой газы находятся в химически связанном виде и в виде гидратной влаги. При протекании реакций силикато- и стеклообразования газы выделяются в атмосферу печи, однако часть пузырьков самых разных размеров остается в расплаве. Скорость освобождения стекломассы от пузырей определяется вязкостью стекломассы, размером пузырей, давлением газов в пузырьках. Когда в стекломассе остаются только крупные пузыри температуру постепенно снижают, чтобы прекратить образование новых пузырей, а крупные пузыри выходят из стекломассы и при более низкой температуре. К концу этой стадии стекломасса освобождается от видимых газовых включений.

Гомогенизация - на этом этапе происходит усреднение расплава по составу, он становится химически однородным. Гомогенизация и осветление протекают одновременно при одних и тех же температурах. Гомогенизации способствуют выделяющиеся из стекломассы газовые пузыри, повышение температуры и связанные с этим понижение вязкости, повышение скорости диффузии и массообмена.

Студка - это завершающий этап стекловарения. На данном этапе происходит подготовка стекломассы к формованию, для чего равномерно снижают температуру на 300 - 400оС и добиваются необходимой для выработки вязкости стекла.

Главное условие во время охлаждения - непрерывное медленное снижение температуры без изменения состава и давления газовой среды. Нарушение этого условия может вызвать сдвиг установившегося равновесия газов и образование так называемой вторичной мошки.

Схема процесса варки стекла представлена на рис. 1

В стекломассе, находящейся в ванной печи, существуют различные конвекционные потоки. Основные два цикла конвекционных потоков - сыпочный и выработочный, которые направлены по продольной оси бассейна.

Внутри сыпочного цикла стекломасса движется сначала по верху от зоны максимальных температур к загрузочной части печи, тормозя продвижение шихты и варочной пены в сторону выработки и отдавая им часть своего тепла, затем опускается вниз и движется в обратном направлении к зоне максимальных температур, где снова поднимается кверху и замыкает цикл. Внутри выработочного цикла стекломасса движется также, но уже в противоположную сторону - к выработке. Часть стекломассы вырабатывается, а остальная часть опускается вниз и движется обратно в варочную часть печи к зоне максимальных температур, где поднимается кверху и замыкает выработочный цикл.

Вертикальная граница раздела этих циклов в зоне максимальных температур называется квельпунктом.

Процесс гомогенизации стекломассы протекает одновременно с процессами стеклообразования и осветления при высоких температурах. Чем полнее протекают диффузионные процессы в силикатном расплаве на стадиях стеклообразования и осветления, тем однороднее получается стекломасса, а поскольку для заданного состава стекла скорость диффузии определяется уровнем температур и вязкости, решающим фактором обеспечения химической однородности стекломассы, является повышение температур варки. После окончания процесса осветления, протекающего при максимальных температурах, процесс химической гомогенизации продолжается и при последующем понижении температуры, но менее интенсивно и постепенно затухает.

В конце варочного бассейна температура стекломассы достигает 1390 - 1400оС. Для интенсификации процесса студки стекломассы на пережиме печи используют заградительное устройство типа холодильник, который погружают в стекломассу на глубину до 450 мм, что в свою очередь, позволяет снизить температуру.

По мере продвижения стекломассы к выработке происходит постепенное ее охлаждение. Понижение температуры стекломассы определяется конструкцией студочного бассейна и закладывается при разработке проекта печи.

Для подготовки стекломассы к выработке, выравнивания термической однородности стекломассы применяют вдувание воздуха в подсводовое пространство студочной части печи, что позволяет снизить колебания температуры стекломассы.

ПОРОКИ СТЕКЛОМАССЫ

ГАЗОВЫЕ ВКЛЮЧЕНИЯ. Пузыри могут быть различных размеров и формы. Мельчайшие пузыри, размером менее 0,8мм называют «мошкой». Располагаются они на поверхности стекла или в его толще.

Первичные пузыри образуются в результате неполного удаления газообразных продуктов разложения шихты, остаются в стекломассе при затянувшемся осветлении. Это происходит при неравномерном зерновом составе песка, недостатке осветлителей, сухой шихте, недостаточном времени пребывания стекломассы в зонах варки и осветления, низких температурах в зоне осветления, завышенных съемах стекломассы, недостаточном количестве теплоты или ее неправильном распределении по длине зон варки и осветления, что ведет к ослаблению потоков сыпочного цикла. Первичные пузыри обычно имеют мелкие размеры.

Вторичные пузыри чаще всего возникают при вторичном нагревании стекломассы, содержащей остатки карбонатов и сульфатов натрия. Опасная температура разложения этих остатков 1150-1200оС. Если вторичный нагрев неизбежен, то необходимо избегать перегрева и вспенивания стекломассы. Вторичные пузыри образуются на границе фаз:

стекломасса - включение; стекломасса - шихтные остатки; стекломасса свили. Источником пузырей служат также и огнеупоры (вкрапления в огнеупорах железа, углерода и т.д.).

Чем ближе к месту выработки образуются пузыри, тем больше их размер.

СТЕКЛОВИДНЫЕ ВКЛЮЧЕНИЯ. Свили - включения стекла другого состава, отличаются от основного стекла по химическому составу и физико-химическим свойствам. Причины их образования - неполное растворение и гомогенизация зерен кварца; неточное дозирование компонентов шихты; плохое смешивание шихты; загрузка боя другого химического состава; вовлечение застойных зон в выработочный поток; неправильное распределение теплоты; свили от огнеупорных материалов; продукты взаимодействия огнеупоров с пылевидными компонентами шихты. Способность свилей растворяться зависит от поверхностного натяжения.

ТВЕРДЫЕ ВКЛЮЧЕНИЯ. Это опасный порок стекломассы. Они вызывают локальные напряжения, которые снижают механическую прочность и термическую устойчивость изделий и часто приводит к самопроизвольному разрушению. Твердые включения могут быть:

-шихтными - непроварившиеся компоненты шихты, которые образуются в результате содержания примесей тяжелых минералов в песке, неоднородности шихты, не хватки плавней, расслоения шихты, неправильного режима варки, образования кремнеземистая пленка;

-огнеупорными - образуются в результате использования некачественного огнеупора, нарушения эксплуатации стекловаренной печи (перелеты пламени, колебание уровня стекломассы и др.), а также в случае попадания огнеупора в печь со стеклобоем;

-сульфатными (щелочными);

-продуктами кристаллизации стекломассы;

-посторонними загрязнениями («черные точки», металл и др.).

§ 2.3 ПРОЦЕСС ФОРМОВАНИЯ ЛИСТОВОГО СТЕКЛА НА РАСПЛАВЕ МЕТАЛЛА

Способ формования листового стекла на поверхности расплавленного металла (флоат - процесс) впервые предложили американцы Хил и Хичкок независимо друг от друга в 1902г. Хичкок усовершенствовал свое изобретение в 1925г.

Сущность этого способа непрерывного производства листового стекла состоит в том, что регулируемое количество стекломассы в виде струи поступает из стекловаренной печи на поверхность расплавленного металла и, продвигаясь по ней, превращается в ленту стекла с огненно - полированными поверхностями.

В результате контакта нижней поверхности ленты стекла с идеально гладкой поверхностью расплавленного металла и огневой полировки ее верхней поверхности (под действием поверхностного натяжения) достигается исключительное качество поверхности листового стекла.

Критерии выбора металла: металл должен быть жидким при температурах 600 - 1050оС; должен иметь плотность больше плотности стекла, т.е. больше 2500кг/м3,чтобы удерживать ленту на поверхности; упругость пара при1027 оС должна быть меньше 13,33Па. Этим требованиям отвечает олово (Sn):

-температура плавления - 232 оС;

-температура кипения 2623 оС;

-плотность при 1050оС составляет 6500 кг/м3;

-упругость пара при1027 оС равна 0,25Па.

Первые образцы флоат-стекла были получены в 1953г. английской фирмой «Пилкингтон».

Процесс формования ленты стекла на расплаве металла осуществляется в ванне расплава, представляющей собой тепловой агрегат, содержащий слой расплавленного металла, защитную восстановительную атмосферу, средства подачи стекломассы и вывода ленты из ванны расплава в печь отжига.

Подача стекломассы из стекловаренной печи в ванну расплава осуществляется через сливной узел, состоящий из мелкого выработочного канала, сливного лотка, отсекающего и дозирующего шиберов. С помощью отсекающего шибера производится прекращение подачи стекломассы в ванну расплава. Дозирующим шибером осуществляется регулируемая подача стекломассы в ванну расплава на формование.

Дно мелкого выработочного канала и лоток выполняются из плавленного огнеупора типа бакор со сроком службы не менее 3-х лет. Шибера изготовлены формованием из порошка кварцевого стекла на кремнеземистой связке. Срок службы шиберов не менее 3-х месяцев.

Температура стекломассы в выработочном канале поддерживается:

-на ЛТФ-1 1100 - 1115 оС (в зависимости от задания)

-на ЛТФ-2 1095 - 1115оС (в зависимости от задания)

-на ЛТФ-4 1095 - 1160 оС (в зависимости от задания)

Температура на выходе из ванны расплава:

-на ЛТФ-1 590-610 оС (16 зона по пирометру 620+1оС)

-на ЛТФ-2 610-620 оС (в зависимости от задания)

-на ЛТФ-4 620 +5 оС

Ванна расплава имеет огнеупорную футеровку, выполненную из шамотных брусьев. Срок службы огнеупоров ванны расплава до капитального ремонта не менее 10 лет. Проектные длина ванн расплава и уровень олова на ОсОО «Интергласс» составляют:

-ЛТФ-1 длина 49,709 м, уровень олова 50 мм в мелкой части, 70 мм в средней, 100-110 мм в глубокой части;

-ЛТФ-2 длина 40,4 м, уровень олова 55 мм в мелкой части и 105 мм в глубокой;

-ЛТФ-4 длина 30,769 м, уровень олова 50 мм в мелкой части и 100 мм в глубокой.

Ванна расплава снабжена:

-сводовыми нагревателями, обеспечивающими в период разогрева ванны температуру по газовому пространству не менее 1000оС и имеющими срок службы не менее 2-х лет;

-системой контроля и плавного регулирования электрической мощности нагревателей;

-системой регулирования потоков расплавленного олова (рассекатели, ограничители);

-системой телевизионного контроля границ стекломассы в зоне ее максимального растекания, в зонах формования ленты стекла с помощью утоняющих устройств;

-стационарными контрольно-измерительными приборами для контроля температуры стекла в выработочном канале, температуры олова в ванне, скоростей растягивания ленты утоняющими устройствами, количества и параметров качества защитной атмосферы.

Процесс формования ленты стекла на расплаве металла делится на следующие технологические операции, которым соответствуют последовательные участки ванны расплава:

- непрерывная регулируемая подача стекломассы из выработочного канала стекловаренной печи и ее слив на расплав олова в головном участке ванны расплава;

- растекание стекломассы на поверхности расплава олова до образования плоского слоя стекла равновесной толщины;

- «активное» формование ленты стекла, где под действием сил вытягивания, прилагаемым к формуемой ленте, она приобретает заданную толщину и ширину;

- охлаждение формуемой ленты до температуры ее выхода из ванны расплава на тянущие валы.

Стекломассу сливают на расплав олова в головной части с носика лотка. Растекание стекломассы ограничивается задним смачиваемым брусом, рестрикторами и боковыми ограничителями. Стекломасса, которая течет от носика лотка к заднему брусу, образует «затек». Важнейшим требованием в процессе формования ленты стекла, является постоянное движение стекломассы в «затеке», чтобы не допустить ее застоя и кристаллизации. В конце участка растекания поток стекломассы под действием сил тяжести и поверхностного натяжения формуется в плоскопараллельный слой толщиной около 7мм. При свободном растекании равновесие сил, действующих на стекломассу, приводит к установлению толщины слоя 6,5-6,8мм, называемого равновесной толщиной. Непременным требованием для получения ленты стекла с высоким качеством по разнотолщинности является достаточная завершенность процесса растекания.

На участке «активного» формования ленту стекла в вязком состоянии подвергают действию сил вытягивания. Существует два способа вытягивания стекла: способ прямого вытягивания и способ продольно-поперечного вытягивания. Продольное вытягивание осуществляют действием сил, передаваемых от роликов печи отжига вдоль затвердевающей ленты. Продольно-поперечное растягивание ленты выполняют с помощью утоняющих машин.

На участке охлаждения теплосъем осуществляется через футеровку ванны и дополнительно холодильниками различных конструкций. Величину теплосъема регулируют изменением количества холодильников. Выравнивание температуры олова по ширине ванны может быть достигнуто изменением электронагрева по участкам и установкой ограничителей потоков олова и холодильников.

Для защиты металлического расплава олова от окисления в ванну расплава подается защитная газовая атмосфера, состоящая из азота и водорода. Подача защитной атмосферы в ванну расплава осуществляется через свод.

Станция получения азотно-водородной смеси (АВС) состоит из 8 установок АВУ-450 общей мощностью 3600м3/ч. Станция предназначена для выработки азотно-водородной смеси, которая содержит от 2 до 12% водорода, до 0,0005% кислорода, СО2 - 0,005%, СО - 0,01%, NO 0,0001%, содержание азота от 76 до86%. Давление на выходе со станции до 0,3кгс/см2

Природный газ и компрессорный воздух подается в цех АВС с давлением до 6кгс/см2. РДУКами (регулятор давления универсальный Казанцева) давление понижается и удерживается до рабочего давления 0,9кгс/см2. Далее газ очищается от примесей серы и сернистых соединений на сероочистках. Очищенный от сернистых соединений природный газ подают через инжекционную горелку в смеситель камеры сжигания. Туда же поступает и компрессорный воздух. Продукты сжигания из камеры подаются в конвектор, где происходит окисление окиси углерода до двуокиси углерода. После конвектора полученный газ проходит систему холодильников, циклонных каплеуловителей, где происходит отделение влаги от газа. Полученный газ подается на адсорберы для очистки от двуокиси углерода и оставшейся влаги.

Защитная атмосфера должна отвечать следующим требованиям по содержанию газов и примесей:

-азота - 99-84%;

- водорода - 1-16%;

- кислорода не более 0,0005%;

- влаги - 0,001г/м3 или точка росы - минус 60оС.

Азотно-кислородная станция (АКС) предназначена для получения азота высокой чистоты и оснащена 8 азотными установками типа А-0,6 с производительностью по азоту 600 м3/час при давлении 5 - 6 кгс/см2 (0,5 - 0,6 мПа) и периодической выдачи 50м3/час азота той же концентрации под давлением 11 - 13 кгс/см2. Получение азота происходит путем охлаждения воздуха с последующим разделением на азот и кислородную фракцию.

Воздух, очищенный в воздушном фильтре от механических примесей и сжатый в компрессоре до давления Р=50 - 70 кгс/см2, после холодильника направляется в блок теплообменников, который состоит из двух параллельно работающих теплообменных аппаратов, имеющих по три секции: ожижительную, детандерную и основную - все три секции смонтированы друг над другом. В качестве обратного потока в первом теплообменнике используется отбросный газ (кислородная фракция после разделения с содержанием кислорода около 60%), во втором - 6-ти атмосферный продукционный азот.

В секциях ожижителя воздух охлаждается до температуры +6-+15оС при этом основная масса содержащихся в воздухе паров воды конденсируется. Из ожижителей воздух поступает во влагоотделитель, где из воздуха выделяется сконденсированная капельная влага и затем периодически удалается через продувочный вентиль. После влагоотделителя воздух направляется в цеолитовый блок очистки. Очищенный воздух возвращается в детандерные секции блока теплообменников, где охлаждается до температуры около -50оС и разделяется на два потока: примерно 27% воздуха отбирается в турбодетандер, а оставшаяся часть дополнительно охлаждается в основных секциях теплообменников. В турбодетандере воздух расширяется до рабочего давления нижней колонны 8 11 кгс/см2 и за счет совершения внешней работы при расширении охлаждается до температуры около -90оС.

Разделение воздуха происходит в аппарате двукратной ректификации. Ректификация в нижней колонне протекает при давлении 8 -11 кгс/см2, в верхней колонне при давлении 5-6 кгс/см2. Воздух поднимается вверх по колонне в виде насыщенного пара. Навстречу ему по тарелкам стекает жидкость из трубок конденсатора. В результате многократно повторяющегося процесса массообмена пара и жидкости на тарелках колонны происходит постепенное обогащение пара азотом, а жидкости - кислородом.

В верхней части верхней колонны собирается чистый азот с концентрацией 0,0005% кислорода. Часть этого азота конденсируется в трубках верхнего конденсатора, образуя дополнительную флегму для орошения верхней колонны. Несконденсированный чистый азот из верхней колонны поступает в межтрубное пространство второго теплообменника, нагревается до температуры на 4-6оС ниже, чем температура входящего воздуха и в виде продукта направляется потребителю.

Водородная станция предназначена для получения водорода и оснащена 8 электролизерами СЗУ-40 с производительностью по водороду 40м3/час каждый.

Электролиз - это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через водный раствор щелочи.

Выделяющиеся при электролизе воды водород и кислород вместе с циркулирующим в системе электролитом поступает в разделительные колонки, которые предназначены для отделения газов от щелочи, охлаждения электролита и обеспечения его непрерывной циркуляции. Из разделительных колонок газы поступают в промыватели, где очищаются от щелочного тумана и охлаждаются. Из электролизных отделений водород поступает на очистку от кислорода, которая осуществляется на палладиевом катализаторе в контактном аппарате. На поверхности катализатора кислород, содержащийся в водороде, реагирует с водородом, образуя воду. Понижение в контактном аппарате температуры (температуры выходящего водорода) ниже 100оС недопустимо, т.к. становится возможной конденсация водяных паров на катализаторе.

Перед подачей водорода на первую ступень осушки его необходимо охладить: для чего водород проходит холодильник и влагоотделитель.

Первая ступень осушки водорода осуществляется в отрегенерированном адсорбере с силикагелем. Горячий водород проходит снизу вверх через слой силикагеля, десорбируя из него влагу. Далее водород охлаждается и через влагоотделитель идет на вторую ступень осушки, в предварительно отрегенерированный осушитель. Водород второй ступени осушки поступает в один из осушительных баллонов, заполненных цеолитом. В адсорберах второй ступени осушки осуществляется глубокая осушка водорода, а также очистка водорода от примесей СО и СН. Очищенный и осушенный водород через фильтры подается в газгольдеры, а оттуда потребителю.


Подобные документы

  • Исследование процесса производства листового стекла. Заливочная и пленочная технологии изготовления триплекса. Безавтоклавная пленочная технология. Резка стекла. Обработка кромки и шлифование торцов. Описание физического процесса растрескивания стекла.

    курсовая работа [970,1 K], добавлен 13.11.2016

  • Оценка потребности и определение ассортимента выпускаемого листового стекла. Технология производства листового стекла флоат-способом формования на расплаве олова, пути и средства его совершенствования. Теплотехнический расчет стекловаренной печи.

    дипломная работа [4,1 M], добавлен 27.06.2011

  • Стекло, его производство и свойства. История возникновения стеклоделия. Технологии изготовления, виды стекла. Свойства, характеристики стекол. Разработка, изготовление установки для проверки стекла на прогиб. Исследование различных видов стекла на прогиб.

    курсовая работа [1,0 M], добавлен 26.04.2009

  • Характеристика листового стекла, его свойства и составы. Описание технологической схемы его производства на флоат-линиях. Анализ сырьевых материалов. Обоснование состава шихты. Расчет стекловаренной печи. Подбор основного и вспомогательного оборудования.

    курсовая работа [114,1 K], добавлен 06.12.2012

  • Технология и товароведение промышленной продукции на примере стекла армированного листового - регламентирование контроля качества и стандарты его показателей, условия поставок, упаковки, транспортировки, приема, испытания, применения и хранения.

    курсовая работа [35,7 K], добавлен 21.06.2008

  • Физические свойства стекла, его классификация. Современные технологии получения стекла. Характеристика листового стекла различного ассортимента, его использование в строительстве и производстве. Теплоизоляционные и звукоизоляционные стекломатериалы.

    курсовая работа [57,2 K], добавлен 26.01.2015

  • Факторы, влияющие на качество процесса производства листового стекла. Причинно-следственная диаграмма Исикавы и Парето. Причины возникновения мизерных дефектов при изготовлении продукции. ABC-анализ наиболее значимых факторов, влияющих на процесс.

    отчет по практике [192,2 K], добавлен 13.07.2014

  • Производство листового стекла. Заливочная, пленочная технология изготовления триплекса. Безавтоклавная пленочная технология. Описание физического процесса растрескивания стекла. Составление операционной карты. Разработка устройства для захвата стекла.

    дипломная работа [1,3 M], добавлен 22.11.2015

  • Анализ традиционных методов резки изделий из стекла: механическая, гидроабразивная. Приемы лазерной резки, их сравнение: скремблирование, термораскалывание. Принципы выбора лазера и его обоснование. Щелевой СО2 – лазер и волоконный, их главные функции.

    курсовая работа [896,7 K], добавлен 14.05.2015

  • Основные виды продукции силикатной промышленности. История стеклоделия в зарубежных странах и России. Обязательные компоненты, необходимые для производства оконного и химического стекла. Химические реакции, происходящие в процессе изготовления стекла.

    презентация [1,4 M], добавлен 04.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.