Производство этилового спирта

Физико-химическое обоснование основных процессов производства этилового спирта. Сернокислая гидратация этилена. Структурная и операторская схема процесса спиртового брожения. Материальный баланс ХТС производства этанола на 7900 кг этиленэтановой фракции.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 03.10.2014
Размер файла 172,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Федеральное агентство по образованию

Томский государственный университет (ТГУ)

Химический факультет

Реферат

Тема: Производство этилового спирта

Выполнила:

Солтыс Е.В.

Томск 2013

План

Введение

1. Характеристика целевого продукта

2. Транспортировка и хранение

3. Экологическая безопасность

4. Характеристика исходного сырья

5. Физико-химическое обоснование основных процессов производства этилового спирта

5.1 Спиртовое брожение

5.2 Сернокислая гидратация этилена

6. Описание технологической схемы процесса производства этилового спирта

6.1 Структурная схема процесса

6.2 Операторская схема процесса

7. Расчет материального баланса ХТС

7.1 Блок-схема

7.2 Пересчет единиц

7.3 Условная постоянная информация

7.4 Балансовая математическая модель

7.5 Соответствие переменных потокам

7.6 Упорядочение переменных

7.7 Материальный баланс ХТС производства этанола на 7900 кг этиленэтановой фракции

7.8 Расчет основных технологических показателей процесса

7.9 Поточная диаграмма

Заключение

Список используемой литературы

Введение

Спиртами называются органические вещества, молекулы которых содержат одну или несколько функциональных гидроксильных групп, соединенных с углеводородным радикалом.

Этиловый спирт широко используют в различных областях промышленности и прежде всего в химической. Из него получают синтетический каучук, уксусную кислоту, красители, эссенции, фотопленку, порох, пластмассы. Спирт является хорошим растворителем и антисептиком. Поэтому он находит применение в медицине, парфюмерии. В больших количествах этиловый спирт идет для получения спиртоводочных изделий.
Таким образом, этиловый спирт относится к числу многотоннажных продуктов основного органического синтеза, мировое производство этилового спирта составляет свыше 2,5 млн. т/г (по объему производства занимает первое место в мире среди всех органических продуктов).

1. Характеристика целевого продукта

Этанол C2H5OH (метилкарбинол, этиловый спирт) - бесцветная подвижная жидкость с жгучим вкусом и характерным запахом, температура кипения 78,39С, температура плавления -114,15С, плотность 0,794 т/м3. Этанол смешивается во всех отношениях с водой, спиртами, глицерином, диэтиловым эфиром и другими органическими растворителями. С некоторыми из них (водой, бензолом, этилацетатом, хлороформом) он образует азеотропные смеси различного состава. С водой дает азеотропную смесь, содержащую 95,6% спирта и, кипящую при температуре 78,1С. В виде такого ректификата этиловый спирт обычно и употребляют в технике. Температура самовоспламенения этанола составляет 422,8С. С воздухом образует взрывоопасные смеси в пределах концентраций 20% (по объему). Температура вспышки 13,0С.

А спирт содержащий только доли процента воды -- абсолютным спиртом. Такой спирт получают химической обработкой в присутствии водоотнимающих средств (например, свежепрокаленного СаО). Этанол образует алкоголяты с солями кальция и магния, например: CaCl2*4C2H5OH и MgCl2*6C2H5OH.

2. Транспортировка и хранение

Этиловый спирт перевозится в железнодорожных цистернах, автоцистернах, в бочках, бутылях и во флягах автомобильным транспортом в соответствии с Правилами перевозки опасных грузов. Этиловый спирт хранят на складах в специально оборудованных и предназначенных для него металлических резервуарах в соответствии с правилами приемки, хранения, отпуска, транспортирования и учета этилового спирта. Допускается хранить этиловый спирт на складах, предназначенных для хранения огнеопасных продуктов, в упаковке изготовителя.

3. Экологическая безопасность

Этиловый спирт -- сильный наркотик. Попадая в организм, он быстро всасывается в кровь и приводит организм в возбужденное состояние, при котором человеку трудно контролировать свое поведение. Употребление спирта часто является основной причиной тяжелых дорожно-транспортных аварий, несчастных случаев на производстве и бытовых преступлений. Спирт вызывает тяжелые заболевания нервной и сердечно-сосудистой систем, а также желудочно-кишечного тракта. Спирт опасен в любой концентрации (водка, настойки, вино, пиво и т.д.). Этиловый спирт, применяемый для технических целей, специально загрязняют дурно пахнущими веществами. Такой спирт называют денатуратом (для этого спирт подкрашивают, чтобы отличить его от
чистого спирта).

4. Характеристика исходного сырья

В качестве исходного сырья в производстве этилового спирта используется этилен. В настоящее время основным способом его получения является пиролиз (высокотемпературный крекинг) углеводородов. Пиролизу подвергают фракции прямой перегонки нефти, состоящие алканов, циклоалканов, аренов, природные и попутные нефтяные газы, содержащие алканы. Этилен образуется в результате реакций распада тяжелых алканов и дегидрирования низкомолекулярных алканов. Потенциальный выход этилена зависит от вида исходного сырья. Виды сырья, используемые в мировом производстве этилена, и их доля в общем балансе производства следующие:

Сырье

Этан

Пропан

Бутан

Бензин

Газойль

Доля, %

36

11

3

47

3

Лучшим сырьем являются парафины, поскольку с повышением содержания водорода в исходных углеводородах выход алкенов возрастает.

5. Физико-химическое обоснование основных процессов производства этилового спирта

5.1 Спиртовое брожение

Известный с давних времён способ получения этанола -- спиртовое брожение органических продуктов, содержащих углеводы (виноград, плоды и т. п.) под действием ферментов дрожжей и бактерий. Аналогично выглядит переработка крахмала, картофеля, риса, кукурузы, источником получения топливного спирта является вырабатываемый из тростника сахар-сырец и проч. Реакция эта довольно сложна, её схему можно выразить уравнением:

C6H12O6 > 2C2H5OH + 2CO2

В результате брожения получается раствор, содержащий не более 15 % этанола, так как в более концентрированных растворах дрожжи обычно гибнут. Полученный таким образом этанол нуждается в очистке и концентрировании, обычно путем дистилляции.

Современная промышленная технология получения спирта этилового из пищевого сырья включает следующие стадии:

Подготовка и измельчение крахмалистого сырья -- зерна (прежде всего -- ржи, пшеницы), картофеля, кукурузы и т.п.

Ферментация. На этой стадии происходит ферментативное расщепление крахмала до сбраживаемых сахаров. Для этих целей применяются рекомбинантные препараты альфа-амилазы, полученные биоинженерным путем -- глюкамилаза, амилосубтилин.

Брожение. Благодаря сбраживанию дрожжами сахаров происходит накопление в бражке спирта.

Брагоректификация. Осуществляется на разгонных колоннах (например, «Комсомолец»).

Отходами бродильного производства являются углекислый газ, барда, эфиро-альдегидная фракция, сивушный спирт и сивушные масла.

Спирт, поступающий из брагоректификационной установки (БРУ) не является безводным, содержание этанола в нем до 96,6 %. В зависимости от содержания в нем посторонних примесей, его разделяют на следующие категории:

1 сорт

высшей очистки

базис

Экстра

Люкс

Альфа

Производительность современного спиртового завода около 30000--100000 литров безводного спирта в сутки. Этот способ сохранился и до сих пор, но он связан с большими затратами пищевого сырья и не может удовлетворить промышленность.

В промышленных масштабах этиловый спирт получают из сырья, содержащего целлюлозу (древесина, солома), которую предварительно гидролизуют. Образовавшуюся при этом смесь пентоз и гексоз подвергают спиртовому брожению. В странах Западной Европы и Америки эта технология не получила распространения, но в СССР (ныне в России) существовала развитая промышленность кормовых гидролизных дрожжей и гидролизного этанола.

5.2 Сернокислая гидратация этилена

Сернокислый способ, предложенный А.М. Бутлеровым, получил промышленное осуществление только в послевоенные годы. Он состоит из следующих четырех стадий: 1) абсорбция этилена серной кислотой с образованием сернокислых эфиров; 2) гидролиз эфиров; 3) выделение спирта и его ректификация; 4) концентрирование серной кислоты.

Взаимодействие между этиленом и серной кислотой состоит из двух этапов: первый - физическое растворение этилена в серной кислоте и второй - гомогенное взаимодействие обоих компонентов с образованием алкилсульфатов по уравнениям:

C2H4 + H2SO4 = C2H5OSO3H

C2H5OSO3H + C2H4 = (C2H5O)2SO2.

Поглощение (абсорбция) этилена серной кислотой - процесс обратимый, экзотермический (H=-50232 кДж/моль), протекает с уменьшением объема.

Скорость абсорбции этилена описывается уравнением:

dG/dt = K*F*P*f(с),

где G - количество поглощаемого этилена, t - время, К - коэффициент, зависящий от интенсивности диффузии, и, следовательно, от интенсивности контакта реагентов (барботаж, перемешивание и т.д.), F - поверхность контакта реагентов, Р - парциальное давление этилена, f(c) - множитель, зависящий от концентрации серной кислоты.

Так, абсорбция этилена 93%-ной кислотой протекает в 10 раз медленнее, чем при концентрации 97,5%. Однако, применение для абсорбции этилена олеума нецелесообразно, т.к. при этом снижается выход этанола из-за образования побочных продуктов - сульфосоединений и повышенного образования полимеров.

При прочих равных условиях скорость абсорбции этилена увеличивается с ростом температуры и парциального давления, однако, при температуре выше 900С начинается интенсивное образование полимеров. Увеличение парциального давления этилена выше 2 МПа становится тоже малоэффективным.

Фактором, ускоряющим процесс абсорбции, является наличие в исходной серной кислоте этилсульфатов, которые, обладая свойствами эмульгаторов, увеличивают поверхность контакта вследствие пенообразования, и тем самым способствуют более быстрому и полному растворению этилена.

В настоящее время в промышленных установках приняты следующие условия абсорбции этилена: концентрация серной кислоты 97-98%, температура 80-850С, парциальное давление этилена на входе в абсорбер 1-1,5МПа, содержание пропилена и высших олефинов в исходной этилен-этановой фракции <0,1%. В ходе второй стадии идет гидролиз этил - и диэтилсульфата по уравнениям:

C2H5OSO3H + H2O C2H5OH + H2SO4,

(C2H5O)2SO2 + 2H2O 2 C2H5OH + H2SO4

Эта стадия также обратима, для обеспечения ее протекания необходим избыток воды, и, по возможности, быстрое удаление спирта из зоны реакции, т.к. кроме основной реакции идет образование диэтилового эфира:

(C2H5O)2SO2 + C2H5OH C2H5OC2H5 + C2H5OSO3H,

(C2H5O)2SO2 + H2O C2H5OC2H5 + H2SO4.

Главным преимуществом сернокислой гидратации по сравнению с прямой гидратацией является возможность применения неконцентрированного этилена, т.к. его концентрирование связано с большими капитальными и эксплуатационными затратами.

Однако, метод сернокислой гидратации имеет ряд недостатков. Среди них можно отметить следующие:

применение сложных и громоздких конструкций;

малоэффективное удаление полимеров однократным экстрагированием. При принятом методе экстрагирования в экстракт переходит 70-75% полимеров, значит, до 30% полимеров остается в разбавленной кислоте;

концентрирование отработанной серной кислоты. Эта часть технологического процесса является самым слабым звеном во всем методе сернокислой гидратации. Во-первых, концентрировать кислоту удается лишь до 88-90%, а, во-вторых, такой процесс концентрирования из-за высокой температуры топочных газов приводит к ощутимым потерям серной кислоты от раскисления, сопровождающегося выбросом вредного SO2 в атмосферу;

неиспользованные возможности экономии энергетических средств.

5.3 Парофазная гидратация этилена

Наиболее разработанным применительно к имеющимся промышленным установкам в настоящее время является процесс газофазной гидратации:

CH2=CH2(г.) + H2O(г.) = C2H5OH(г.) + 41868Дж/моль.

Механизм:

CH2=CH2 + Н+ СН3-СН2+,

СН3-СН2+ + Н2О СН3-СН2-ОН2+,

СН3-СН2-ОН2+ СН3-СН2-ОН + Н+.

Но наряду с основной реакцией идут параллельные и последовательные побочные реакции:

C2H4 + H2O = C2H5OC2H5,

n(C2H4) = (-CH2-CH2-)n.

Таким образом, процесс сложный, обратимый, несмещенный (таблица 1), экзотермический, протекает с уменьшением объема.

Таблица 1. Равновесный выход этанола.

Отношение количеств веществ: МH2O/MC2H4

Равновесный выход за один проход при давлении 8Мпа при температуре:

2800С

2900С

0,6

15,4

8,53

0,8

18,3

10,15

Следует обратить внимание на два физико-химических фактора, которые определяют основные технологические параметры процесса. Прежде всего, это активность катализатора, которая имеет решающее значение для определения температуры процесса. Катализаторами прямой гидратации могут служить фосфорная кислота и ее соли. Чаще всего используется фосфорная кислота концентрацией 85-87% на таких носителях, как алюмосиликаты, силикагели, пемза и др.; значительная часть кислоты (до 35%) находится в свободном состоянии. Активность этого катализатора является невысокой. Только при температуре 280-3000С ее можно считать более или менее приемлемой для промышленных условий. При более высокой температуре в значительной мере развиваются побочные процессы: полимеризация этилена, усиленное образование эфира и т.д.

Другим отправным фактором в газофазном процессе выступает весьма низкая по сравнению с этиленом летучесть воды, которая имеет решающее значение для определения давления процесса. Последнее, при прочих равных условиях, зависит от парциального давления паров воды, т.е. тоже от температуры.

Таким образом, температура становится важнейшим параметром, определяющим не только скорость, но и общее давление процесса. Так, в соответствии со стехиометрическим уравнением реакции, для эквимолярной смеси этилена и паров воды, парциальное давление последних должно составлять примерно половину от общего давления. Однако с целью предотвращения конденсации водяного пара в самом реакторе, что приводит к разбавлению фосфорной кислоты и парализует действие катализатора, парциальное давление паров воды, а, значит, и общее давление, должно быть несколько ниже. И действительно, в промышленности применяют общее давление около 8,0МПа.

Имеются и другие пути, предотвращающие появление водяного конденсата. Во-первых, это повышение температуры. Однако, в силу экзотермичности процесса, этот путь принципиально непригоден, т.к. приводит к снижению конверсии этилена и интенсификации побочных процессов. Во-вторых, это снижение парциального давления паров водяного пара за счет повышения парциального давления этилена. Однако, этот путь тоже непригоден. Он также приводит к снижению выхода этанола, т.к. оптимальным соотношением между реагирующими компонентами является эквимолярное. Мольное соотношение, используемое в промышленности, этилен - пары воды равно 1 : 0,6-0,8.

Выбранное соотношение компонентов диктует выбор общего давления:

Робщ = РС2Н4 + РН2О + Ринерт.

Известно, что давление паров воды над 85%-ной фосфорной кислотой при температуре 2800С составляет 2,7МПа. Принимая во внимание мольное соотношение между компонентами, видно, что давление паров этилена составляет около 4,7МПа. В таком случае концентрация инертных примесей должна быть порядка 15% (Ринерт = РС2Н4*0,15/0,85). Давление больше 8МПа нежелательно т.к. происходит конденсация водяного пара.

В настоящее время процесс гидратации этилена реализуется в промышленности при следующих условиях: t = 280-3000С; Р = 8,0МПа; мольное соотношение пары воды: этилен = 0,6 : 0,8; катализатор - фосфорная кислота и фосфаты на алюмосиликате или силикагеле при содержании Н3РО4 до 35% в свободном состоянии, объемная скорость циркулирующего газа 1800-2000ч-1, что соответствует продолжительности контакта 18-20с и производительности 180-200кг этанола с 1м3 катализатора в 1 ч.

При этих условиях этилен расходуется примерно следующим образом: 95% - на образование этанола; 2-3% - этилового эфира; 1-2% - ацетальдегида; 1-2% - полимеров и др. продуктов.

В приведенных условиях гидратации максимальный выход (равновесный) за один проход может составить только 10%; практически он достигает лишь 5%, что приводит к необходимости многократной циркуляции реакционной газовой смеси через слой катализатора.

Увеличение объемной скорости является методом интенсификации рециркуляционного процесса, поэтому процесс синтеза этанола ведут с большими объемными скоростями.

Малая конверсия этилена и низкая производительность катализатора обусловили необходимость работы не с разбавленным, а с концентрированным 98-99% этиленом. Даже при таком концентрированном этилене, т.е. при содержании в нем до 2% инертных примесей, они накапливаются в рециркулирующем газе, что приводит к снижению содержания этилена. Нижний предел концентрации этилена принят сегодня 85%, что соответствует содержанию инертных примесей до 15%. Поэтому необходим отвод последних с частью рециркулирующего газа (отдувка), которая составляет 13% от подачи свежего 98%-ного этилена.

Из рециркулирующей реакционной газовой смеси необходим непрерывный отвод получаемого этанола. Практически удаление этанола производится обычным методом конденсации, при этом вода как менее летучий компонент конденсируется с большей полнотой. Это приводит к огромным затратам тепла (учитывая крупнотоннажность производства этанола) на получение водяного пара, из которого только 5% расходуется на конденсацию этанола, а остальные 95% - на конденсацию воды. Поэтому возникает острая необходимость в утилизации тепла непрореагировавшего водяного пара путем эффективного теплообмена между потоками выходящего из реактора и входящего в него газовых смесей, а также путем генерации вторичного водяного пара в котлах-утилизаторах. Относительно низкий температурный потенциал тепла (250-3000С) приводит к громоздкой системе теплообмена и теплоиспользующих аппаратов.

Однако интенсивная циркуляция реакционной газовой смеси, кратность которой (при выходе этанола около5%) достигает 20, и сравнительно невысокая теплота реакции позволяет весьма просто реализовать процесс в адиабатическом реакторе колонного типа. Выделяющаяся теплота реакции повышает температуру реагирующего газового потока лишь на 15-200С, что допустимо.

Несмотря на весьма малую летучесть фосфорной кислоты, унос ее в виде паров при такой значительной рециркуляции реакционной газовой смеси и высокой температуре достигает 0,4-0,5кг/ч с 1м3 катализатора, что может вызвать коррозию аппаратуры и ограничивает длительность нормальной работы катализатора до 500-600 часов. В связи с этим была разработана технология непрерывной подачи свободной фосфорной кислоты в реакционную газовую смесь на входе в реактор, нейтрализации ее щелочью на выходе из реактора и регенерация из полученных при нейтрализации солей. Это позволило увеличить длительность работы катализатора до 1500 часов, заметно сократить расход фосфорной кислоты и значительно уменьшить коррозию оборудования. Такой процесс можно проводить в стальной аппаратуре.

Из приведенной физико-химической характеристики процесса можно вывести основные положения, которые были приняты при разработке существующей технологической схемы.

Необходимо построить схему по принципу многократной циркуляции реакционной газовой смеси через реактор с отводом целевого продукта - этанола - конденсацией;

В качестве исходного продукта следует применять чистый этилен с минимальным содержанием инертных примесей, которые накапливаются в реакционной смеси и частично отводятся с рециркулирующей газовой смесью в виде «отдувки»;

Повышение давления процесса ограничено из-за опасности конденсации воды, снижающей активность катализатора;

Процесс необходимо проводить при эквимолярном или близком к нему соотношении этилен / водяной пар;

Необходимо наиболее полно регенерировать тепло, расходуемое на получение водяного пара;

Возможно применение адиабатического реактора простейшей конструкции;

Целесообразно подпитывать поступающую в реактор реакционную газовую смесь свежей фосфорной кислотой, необходима нейтрализация паров кислоты на выходе из реактора, включая регенерацию ее из выпавших солей.

6. Описание технологической схемы процесса производства этилового спирта

Технологические схемы синтеза этанола различаются способами получения водяного пара и системами утилизации тепла. В наиболее совершенных схемах водяной пар для синтеза получают путем рецикла воды после отделения этанола и использованием парового конденсата.

6.1 Структурная схема процесса

Свежий и оборотный этилен сжимается в компрессорах (1), (2) до 8,0 Мпа, смешивается с водяным паром, поступающим обычно с ТЭЦ, подогревается в теплообменнике (4) теплом отходящей из реактора смеси и перегревается в трубчатой печи (3) до 275С, после чего подается в реактор-гидратор (5). Перед входом в реактор в поток «вбрызгивается» фосфорная кислота для подпитки катализатора, что продлевает срок его службы (реакционная газовая смесь смешивается с подаваемой фосфорной кислотой при температуре 280-3000С).

Реактор представляет собой полую колонну высотой 10 м и диаметром 1,5 м, работающую в режиме идеального вытеснения. Для исключения влияния коррозии от фосфорной кислоты он выложен листами красной меди.

Реакционные газы содержат пары унесенной фосфорной кислоты, которая нейтрализуется гидроксидом натрия, а образующиеся соли выделяются в солеотделителе (6). Отток фосфорной кислоты составляет 0,4 - 0,5 т/час с 1 м3 катализатора.

Теплота отходящих реакционных газов регенерируется в теплообменнике (4) для нагрева входящей смеси. В холодильнике (7) происходит конденсация продуктов реакции, а в сепараторе (8) разделяются жидкие и газовые потоки. Вода, как менее летучий компонент, конденсируется с большей полнотой. Поэтому для дополнительного выделения спирта производится его отмывка водой в абсорбере (9). Непрореагировавший газ, содержащий 90 - 92 этилена, рециркулируют компрессором (2), а часть его сбрасывают, чтобы избежать накопления примесей в системе.

Отдувка составляет примерно 20 от введенного этилена и направляется на установку газоразделения для выделения этилена.

Водный конденсат после сепаратора (8) и жидкость из абсорбера (9) дросселируют, в результате чего выделяются растворенные газы, отделяемые в сепараторе низкого давления (10) и направляемые в топливную линию.

Жидкая фаза из сепаратора (10) представляет собой 15-ный водный раствор этанола, содержащий примеси диэтилового эфира, ацетальдегида и низкомолекулярных полимеров этилена. Этот раствор подвергают ректификации в ректификационных колоннах (11) и (12). В первой отгоняют наиболее летучие диэтиловый эфир и ацетальдегид, а во второй - этиловый спирт в виде азеотропной смеси, содержащей 95 этанола и 5 воды. Обогрев колонны осуществляется острым паром. В кубе колонны (12) остается вода, которую очищают от соли в ионообменной установке (13) и возвращают на гидратацию, организуя замкнутый цикл по технологической воде. Это позволяет значительно снизить расход свежей воды, исключить сброс отработанной воды в стоки и сократить потери этанола.

При необходимости получения безводного спирта этанол-ректификат направляют в дегидратор. Расход этилена на производство 1 т этилового спирта составляет 0,7 т (теоретический расходный коэффициент 0,61 т C2H4). В структуре себестоимости спирта 30 приходится на стоимость сырья.

6.2. Операторная схема процесса:

7. Расчет материального баланса ХТС

7.1 Блок-схема

7.2 Пересчет единиц

Доля по объему доля по массе;

mC2H4 = 0,96*MC2H4 = 0,96*28 = 26,88 г,

mC2H6 = 0,04*MC2H6 = 0,04*30 = 1,2 г,

m? = mC2H4 + mC2H6 = 26,88 + 1,2 = 28,08 г,

Тогда 26,88/28,08 = 0,958 масс долей или 95,8 % масс.,

1,2/28,08 = 0,042 масс долей или 4,2 % масс.

7.3 Условная постоянная информация

Содержание информации

Условное обозначение

Единица измерения

Принятые значения

1.

Содержание С2Н4 в этиленовой фракции

011

доля по объему

0,96

2.

Содержание С2Н5ОН в ректификате

401

доля по массе

0,945

3.

Норма расхода пара

К

моль Н2О / моль С2Н4

0,7

4.

Конверсия этилена

доля единицы

0,055

5.

Селективность

1

доля единицы

0,955

6.

Степень превращения конвертированного этилена в

- диэтиловый эфир

- ацетальдегид

2

3

доля единицы

0,035

0,01

7.

Содержание инертов в циркуляционном газе

51и

доля по объему

0,16

8.

Количество свежей этиленэтановой фракции (базис расчета)

П

кг

7900

9.

Доля отдуваемого газа, выходящего из сепаратора

35и

доля по объему

0,15

7.4 Балансовая математическая модель

Баланс по этилену по первому узлу:

N12 = П*011/Мэтилена + N51*(1-51и)\

Количество воды, пошедшее на образование этанола:

(N012 + N41)/N12 = K

Баланс по этилену по третьему и пятому узлам:

N12*(1-) = N51*(1-51и) + N501*(1-35и)

Баланс по этанолу по четвертому узлу:

N12**1*Mэтанола = G401*401

Баланс по диэтиловому эфиру:

G402 = 0,5* N12**2*Mэфира

Баланс по ацетальдегиду:

G403 = N12**3*Mацетальдегида

Баланс по воде по всей схеме:

N012= G401*401/*Mэтанола + G401*(1-401)/Мводы + G402/ Mэфира + G403/ Mацетальдегида

Отдувка

П*(1-011)/Мэтана + G403/Mацетальдегид = N50*35

7.5 Соответствие переменных потокам

Наименование потока

Условное обозначение

i

Размерность

Значение

по расчету

1.

Циркул. поток этилена

N51

1

кмоль

3988

2.

Поток этилена

N12

2

кмоль

3620

3.

Свежий поток водяного пара

N012

3

кмоль

228,03

4.

Циркул. поток водяного пара

N51

4

кмоль

2306

5.

Отдувка

N501

5

кмоль

83,431

6.

Поток этанола на выходе из блока разделения

G401

6

Кг

9269

7.

Поток диэтилового эфира на выходе из блока разделения

G402

7

Кг

253,379

8.

Поток ацетальдегида на выходе из блока разделения

G403

8

Кг

87,597

7.6 Упорядочение переменных

2 = (1 - 0,16)1 + 7900*0,957/28 = 0,841 + 270

2 - 0,841= 270

(3 + 4)/2 = 0,7

3 + 4 - 0,72 = 0

2*(1 - 0,055) = 1*(1 - 0,16) + 5*(1 - 0,15)

0,9452 - 0,841 - 0,855 = 0

2*0,055*0,955*46 = 6*0,945

2,422 - 0,9456 = 0

7 = 0,5*0,055*0,035*74*2

0,072 - 7 = 0

8 = 0,055*0,01*44*2

0,02422 - 8 = 0

3 = 6*0,945/46 + 6*(1 - 0,945)/18 + 7/74 + 8/44

3 - 0,024*6 - 0,014*7 - 0,023*8 = 0

7900*(1 - 0,96)/30 + 8/44 = 0,15*5

0,023*8 - 0,15*5 = - 10,5

i

Св. член

1

2

3

4

5

6

7

8

-0,84

0

-0,84

0

0

0

0

0

1

-0,7

0,945

2,42

0,07

0,0242

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

-0,85

0

0

0

0

-0,15

0

0

0

-0,945

0

0

-0,024

0

0

0

0

0

-1

0

-0,014

0

0

0

0

0

0

-1

-0,023

0,023

270

0

0

0

0

0

0

-10,5

7.7 Материальный баланс ХТС производства этанола на 7900 кг

этиленэтановой фракции

G0этилена = П*0,958 = 7900*0,958 = 7568 кг

G0воды = N012*Мводы = 228,03*18 = 4104,54 кг (приход)

G0этана= П*0,042 = 7900*0,042 = 332 кг

Gспирта = G401*0,945 = 9269*0,945 =8759,2 кг

Gпарар = N51*Мводы =2306*18 = 41508 кг

Gводы = G401 - Gспирта = 9269 - 8759,2 = 509,8 кг (расход)

Gдиэтилового эфира = G402 = 253,379 кг

Gацетальдегида = G403= 87,597 кг

Приход

расход

наименование

кг

% масс

Наименование

кг

% масс.

1.Этиленовая фракция:

этилен

этан

2.Водяной пар (рец.)

3. Вода

7568

332

41508

4104,54

14

0,6

77,6

7,8

Этанол

Вода, введенная со спиртом

Водяной пар (рец.)

Диэтиловый эфир

Отдувка

Ацетальдегид

Невязка

8759,2

509,8

41508

253,38

2336,1

87,597

58,494

16,4

0,9

77,6

0,5

4,3

0,2

0,1

Всего

53512,54

100

Всего

53512,54

100

7.8 Расчет основных технологических показателей процесса

Расходные коэффициенты по сырью:

практэтилена = G0этилена/ Gспирта = 7568/8759,2= 0,864

практводы = G0воды/ Gспирта = 4204,54/8759,2 = 0,48

теорэтилена = Мэтилена/ Мспирта = 28/46 = 0,609

теорводы = Мводы/ Мспирта = 18/46 = 0,391

Выход этанола:

= G спирта/Gспиртастех= Gспирта/(G этилена*(Mспирта /Мэтилена)) = 8759,2/7568*(46/28)*100% = 70,4 %

Конверсия этилена:

Х = (G спирта/Mспирта +Gдиэтилового эфира/Mдиэтилового эфира *2/1)/ (G этилена/ Мэтилена) = (8759,2/46+253,379/74*2)/(7568/28)=0,728=72,8%

7.9 Поточная диаграмма

Заключение

В заключении хотелось бы сказать, что в настоящее время находится широкое применение спиртов. На многих производствах спирты применяются в качестве растворителей. В химической промышленности они используются для различных синтезов. Метиловый спирт в больших количествах «идёт» на получение формальдегида, используемого в производстве пластмасс уксусной кислоты и других органических веществ. В настоящее время разрабатывается много новых технологических процессов на основе использования метилового спирта как исходного продукта, поэтому значение его в промышленном производстве нужных народному хозяйству, веществ и материалов будет всё более возрастать.

Перспективным считается использование метилового спирта в качестве моторного топлива т.к. добавка его к бензину повышает октановое число горючей смеси и снижает образование вредных веществ в выхлопных газах.

Этиловый спирт в больших количествах идёт на производство синтетического каучука. Окислением спирта получают пищевую уксусную кислоту. Путём его дигидратации готовят диэтиловый (медицинский) эфир, с взаимодействием с хлороводородом получают хлорэтан, для местной анестезии. Спирт применяется при изготовлении многих лекарств. В парфюмерии он идёт на изготовление духов и одеколонов.

Но также спирты могут оказывать негативное воздействие на организм. Особенно ядовит метиловый спирт: 5 -10 мл спирта вызывают слепоту и сильное отравление организма, а 30 мл могут привести к смертельному исходу.

Этиловый спирт - наркотик. При приеме внутрь он вследствие высокой растворимости быстро всасывается в кровь и возбуждающе действует на организм. Под влиянием спиртного у человека ослабевает внимание, затормаживается реакция, нарушается координация, появляется развязность, грубость в поведении и т. д. Все это делает его неприятным и неприемлемым для общества. Но следствия употребления алкоголя могут быть и более глубокими. При частом потреблении появляется привыкание, пагубное пристрастие к нему, и в конце концов тяжелое заболевание - алкоголизм. Спиртом поражаются слизистые оболочки желудочно-кишечного тракта, что может вести к возникновению гастрита, язвенной болезни желудка, двенадцатиперстной кишки. Печень, где должно происходить разрушение спирта, не справляясь с нагрузкой, начинает перерождаться, в результате возникает цирроз. Проникая в головной мозг, спирт отравляюще действует на нервные клетки, что проявляется в нарушении сознания, речи, умственных способностей, в появлении психических расстройств и ведет к деградации личности.

Особенно опасен алкоголь для молодых людей, так как в растущем организме интенсивно протекают процессы обмена веществ, а они особенно чувствительны к токсическому воздействию. Поэтому у молодежи быстрее, чем у взрослых, может появиться алкоголизм.

Список использованной литературы

Общая химическая технология: Учебник для химико-технологических специальностей. Т. 2.

Важнейшие химические производства. / Мухленов И.П., Авербух А.Я., Кузнецов Д.А. и др. Под редакцией И.П. Мухленова. - М.: Высш. шк.,1984.

Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. - М.: Химия, 1981.

Тимофеев В.С., Серафимов Л.А. Принципы технологии основного органического и нефтехимического синтеза. - М.: Химия, 1992.

Кононова Г.Н., Сафонов В.В. Учебно-методическое пособие « Производство этилового спирта прямой гидратацией этилена».

Сборник заданий курсовых и домашних работ для студентов 4 курса. В двух частях. Ч. 1./ Егорова Е.В., Игумнов М.С., Кононова Г.Н. и др. Под ред. Кононовой Г.Н., Сафонова В.В., Смирновой С.Н. - М.: ИПЦ МИТХТ им. М.В. Ломоносова, 2002.

Размещено на Allbest.ru


Подобные документы

  • Изучение этапов производства основных мономеров для синтетического каучука - группы разнообразных по химическому составу высокомолекулярных соединений, обладающих высокой эластичностью. Параметры производства дивинила из этилового спирта по Лебедеву.

    реферат [5,8 M], добавлен 01.02.2011

  • Промышленные способы производства этилового спирта, основные направления их развития и усовершенствования. Характеристика сырья, материалов, полупродуктов и готовой продукции. Технологический расчет и выбор оборудования. Экономическое обоснование проекта.

    дипломная работа [542,8 K], добавлен 27.11.2014

  • Характеристика сырья, осахаривающих и вспомогательных материалов. Технология производства этилового спирта с применением механико-ферментативной крахмалистой массы. Показатели качества готового продукта. Послеспиртовая барда и варианты её реализации.

    отчет по практике [588,7 K], добавлен 22.03.2015

  • Разновидности и основные характеристики жидких котельных топлив. Способы промышленного производства пищевого этилового спирта. Отходы производства этилового спирта и способы их утилизация. Виды котельных топлив. Технический анализ модифицированных топлив.

    дипломная работа [1,9 M], добавлен 15.06.2010

  • Использование этилового спирта в пищевой промышленности при изготовлении ликерно-водочных изделий, плодово-ягодных вин, пищевых ароматизаторов. Технология производства спирта: использование катализаторов (ферментов), имеющих биологическое происхождение.

    контрольная работа [24,5 K], добавлен 30.07.2010

  • Выбор, разработка технологической схемы процесса улавливания этилового спирта. Описание технологической схемы улавливания. Технологический расчет вертикального кольцевого адсорбера. Схема общего вида, устройство и принцип действия адсорбционной установки.

    курсовая работа [131,9 K], добавлен 15.11.2009

  • Биохимическая технология получения спирта. Способы осахаривания разваренной массы, сбраживания зерно-картофельного сусла. Расчет продуктов спиртового производства. Подбор технологического оборудования. Учет и контроль производства. Расход воды и пара.

    курсовая работа [943,3 K], добавлен 17.03.2015

  • Виды мелассы, ее доставка и хранение. Вспомогательные материалы в спиртовом производстве. Подготовка сырья к сбраживанию. Выращивание чистой культуры дрожжей. Особенности перегонки бражки и выхода спирта, его применение в разных областях промышленности.

    реферат [29,4 K], добавлен 02.07.2013

  • Свойства, производство и области применения поливинилового спирта. Методы физико-химической и биологической очистки сточных вод, содержащих отходы поливинилового спирта. Применение отходов поливинилового спирта для производства антиобледенителя.

    курсовая работа [81,1 K], добавлен 18.02.2011

  • Принципиально-технологическая схема производства спирта из зернового сырья. Качество зерна, идущего на разваривание. Современные штаммы дрожжей, применяемые при производстве спирта из зерна. Процесс непрерывного осахаривания с вакуум-охлаждением.

    контрольная работа [87,4 K], добавлен 19.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.