Шлифовальные станки

Способы повышения эффективности процесса шлифования, основные схемы, обзор оборудования и инструментов. Абразивные материалы. Связка шлифовального круга. Смазочно-охлаждающие жидкости. Форма и маркировка шлифовальных кругов. Автоматизация процесса.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 04.11.2014
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования Российской Федерации

Санкт-Петербургский государственный политехнический университет

Институт металлургии, машиностроения и транспорта

Кафедра Станкостроения

Курсовая работа по предмету «Развитие станкостроения»

Тема: Шлифовальные станки

Студент гр.33323/20:

Дударев С.Б.

Преподаватель:

Прокопенко В.А.

Санкт-Петербург 2014

Оглавление

  • 1. Шлифование, определение, назначение
  • 2. Основные схемы шлифования
  • 3. Оборудование и инструменты
    • 3.1 Классификация шлифовальных станков
      • 3.1.1 Обработка заготовок на круглошлифовальных станках
      • 3.1.2 Обработка заготовок на в внутришлифовальных станках
      • 3.1.3 Бесцентрово-шлифовальные станки
      • 3.1.4 Плоскошлифовальные станки
      • 3.1.5 Притирочные станки
      • 3.1.6 Хонинговальные станки
      • 3.1.7 Станки для суперфиниширования
    • 3.2 Шлифовальные круги
      • 3.2.1 Абразивные материалы
      • 3.2.2 Связка шлифовального круга
      • 3.2.3 Твердость абразивного инструмента
      • 3.2.4 Форма и маркировка шлифовальных кругов
    • 3.3 Смазочно-охлаждающие жидкости
  • 4. Способы повышения эффективности процесса шлифования
    • 4.1 Скоростное шлифование
    • 4.2 Силовое шлифование
    • 4.3 Автоматизация
  • Список литературы

1. Шлифование, определение, назначение

Шлифование - один из прогрессивных методов обработки металлов резанием. При шлифовании припуск на обработку срезают абразивными инструментами - шлифовальными кругами. Шлифовальный круг представляет собой пористое тело, состоящее из большого числа абразивных зерен, скрепленных между собой связкой. Между зернами круга и связкой расположены поры. Материалы высокой твердости, из которых образованы зерна шлифовального круга, называют абразивными.

Шлифование состоит в том, что шлифовальный круг, вращаясь вокруг своей оси, снимает тонкий слой металла (стружку) вершинами абразивных зерен, расположенных на режущих поверхностях шлифовального круга (периферия круга).

Число абразивных зерен, расположенных на периферии круга, очень велико; у кругов средних размеров оно достигает десятков и сотен тысяч штук. Таким образом, при шлифовании стружка снимается огромным числом беспорядочно расположенных режущих зерен неправильной формы, что приводит к очень сильному измельчению стружки и большому расходу энергии.

Режущая поверхность шлифовального круга состоит из множества абразивных зерен, расположенных на его поверхности на некотором расстоянии друг от друга и выступающих на различную высоту. Этим объясняется то, что не все абразивные зерна работают одинаково.

Абразивное зерно, вращаясь с очень большой скоростью (90 м/с и более), срезает металл с поверхности заготовки, следовательно шлифование необходимо рассматривать как сверхскоростное резание (царапанье) поверхностных слоев заготовки большим числом мельчайших шлифующих зерен (резцов), соединенных в круге с помощью связки. Полученная таким образом шлифованная поверхность представляет собой совокупность шлифовочных рисок, оставляемых вершинами абразивных зерен круга. Образование каждой шлифовочной риски происходит в результате последовательного внедрения режущей кромки зерна в обрабатываемую поверхность.

2.

2. Основные схемы шлифования

Формы деталей современных машин представляют собой сочетание наружных и внутренних плоских, круговых цилиндрических и круговых конических поверхностей. Другие поверхности встречаются реже. В соответствии с формами

Рис.1 Основные схемы шлифования

деталей машин наиболее распространены схемы шлифования, приведенные на рис. 1

Для всех технологических способов шлифовальной обработки главным движением резания (м/с) является вращение круга. При плоском шлифовании возвратно-поступательное перемещение заготовки необходимо для обеспечения продольной подачи (м/мин) (рис.1, а). Для обработки поверхности на всю ширину b

Заготовка или круг должны иметь движение поперечной подачи . Это движение происходит прерывисто (периодически) при крайних положениях заготовки в конце продольного хода. Периодически происходит и движение подачи на глубину резания. Это перемещение осуществляется также в крайних положениях заготовки, но в конце поперечного хода.

При круглом шлифовании (рис. 1, б) движение продольной подачи обеспечивается возвратно-поступательным перемещением заготовки. Подача (мм/об.заг.) соответствует осевому перемещению заготовки за один ее оборот. Вращение заготовки является движением круговой подачи.

Подача (мм/дв.ход или мм/ход) на глубину резания для приведенной схемы обработки происходит при крайних положениях заготовки. Движения, осуществляемые при внутреннем шлифовании, показаны на рис. 1, в.

В автоматизированных шлифовальных станках цикл работы станка включает периодический вывод круга из зоны шлифования, его автоматическую правку и перемещение круга к изделию на величину снятого при правке слоя абразива. Предусматривают также автоматическую установку заготовок в зажимные устройства и удаление готовых деталей.

3. Оборудование и инструменты

3.1 Классификация шлифовальных станков

Металлорежущие станки, предназначенные для обработки заготовок абразивными инструментами, составляют группу - шлифовальные станки. Шлифовальные станки обеспечивают шестой и седьмой квалитеты ИСО. При обычном шлифовании достигают параметра шероховатости поверхности Ra=1,250,32 мкм, при точном шлифовании Ra=0,380,08 мкм, а при отдельных операциях Ra=0,080,02 мкм.

По классификатору ЭНИМС предусмотрено разделение всех металлорежущих станков на 9 групп. Группы делят на типы, а типы по размерам станков или обрабатываемых заготовок.

Группа станков с абразивным инструментом обозначена цифрой 3 (первая цифра в обозначении модели). Вторая цифра указывает тип станка:

1 - круглошлифовальные станки (3161);

2 - внутришлифовальные станки (3228);

3 - обдирочношлифовальные станки (332);

4 - специализированные шлифовальные станки, например, шлицешлифовальные (3451);

5 - не предусмотрено;

6 - заточные (364);

7 - плоскошлифовальные с прямоугольным (371) или круглым (3756) столом;

8 - притирочные и полировальные станки (3816);

9 - разные станки, работающие с применением абразивного инструмента (395). Когда необходимо указать, что рассматриваемая конструкция станка усовершенствована, то есть принадлежит к новому поколению станков, то в условное обозначение вводят букву А (3А64).

Кроме станков, изготовляемых серийно, станкостроительные заводы выпускают много специальных станков; обозначают их, как правило, условными заводскими номерами.

Например, внутришлифовальный автомат ЛЗ-242 изготовлен на Ленинградском станкостроительном заводе им. Ильича (ЛЗ) под номером 242. Указанный шифр станка не дает конкретных сведений о нем, следовательно, необходима дополнительная информация.

Металлорежущие станки, в том числе станки шлифовальной группы, делят на универсальные, специализированные и специальные.

Отечественная станкостроительная промышленность изготовляет металлорежущие станки пяти классов точности; Н - нормальной, П - повышенной, В - высокой, А - особо высокой, С - особо точной.

Набольшее применение в промышленности нашли шлифовальные станки повышенной и нормальной точности. Соотношение между показателями точности при переходе от одного класса к другому для большинства станков принято по геометрическому ряду со знаменателем 1,6. Например, допускается осевое биение шпиндельной бабки круглошлифовальных станков 4.0, 2.5, 1.6, 1.0 мкм для классов точности соответственно П, В, А, С. Высокую точность станков обеспечивают изготовлением основных деталей с высокой степенью точности, а также резким уменьшением тепловых деформаций станка путем выноса из станка части гидропривода, системы смазывания и охлаждения, резкого сокращения его вибраций путем динамической балансировки электродвигателя, планшайб, шкивов, а так же конструктивным изменениям отдельных элементов станка.

3.1.1 Обработка заготовок на круглошлифовальных станках

Конструкция круглошлифовальных станков и их компоновка подчиняются основным схемам шлифования. Кругло-шлифовальный станок состоит из следующих основных узлов (рис. 2): станины 1, стола 2, передней бабки 3 с коробкой скоростей, шлифовальной бабки 4, задней бабки 5, привода стола 6. Эти станки разделяют на простые, универсальные и врезные. На универсальных станках каждую из бабок можно повернуть на определенный угол вокруг вертикальной оси и закрепить для последующей работы. Простые станки снабжены неповоротными бабками. У врезных станков отсутствует продольное движение подачи стола, а процесс шлифования ведется по всей длине заготовки широким шлифовальным кругом с движением поперечной подачи.

Возвратно-поступательное перемещение стола для движения продольной подачи производят с помощью гидроцилиндра и поршня. Движение круговой подачи . , заготовки обеспечивает специальный электродвигатель. Шлифовальный круг вращается с помощью клиноременной передачи.

Рис. 2. Круглошлифовальный станок

Когда круг износится диаметр его уменьшится, используют другую пару шкивов, и скорость движения резания увеличится.

При шлифовании наружных цилиндрических и конических поверхностей обрабатываемая заготовка может быть установлена в центрах станка, цанге, патроне или специальном приспособлении.

Скорость вращения заготовки при шлифовании в зависимости от ее диаметра назначается от 10 до 50 м/мин, скорость вращения шлифовального круга составляет у многих станков 30 м/с, а при использовании более прочных кругов достигает 50 ... 60 м/с. Продольная, поперечная подачи, глубина резания устанавливаются в зависимости от способов шлифования.

Наибольшее распространение получили методы шлифования на центрах. Для повышения точности обработки центры устанавливают неподвижно. Движение круговой подачи заготовки обеспечивается за счет поводкового устройства. Возможно консольное закрепление заготовок в кулачковых патронах.

Круглое шлифование цилиндрических поверхностей может быть выполнено по одной из четырех схем (рис. 3).

Рис. 3. Схемы обработки на круглошлифовальных станках

При шлифовании с продольной подачей (рис. 3, а) заготовка вращается равномерно (.) и совершает возвратно-поступательные движения (). В конце каждого хода заготовки шлифовальный круг автоматически перемещается на , и при следующем ходе срезается новый слой металла определенной глубины, пока не будет достигнут необходимый размер детали.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рис. 4. Схемы шлифования конических поверхностей

Производительный способ обработки - врезное шлифование (рис. 3, б) - применяют при обработке жестких заготовок в тех случаях, когда ширина шлифуемого участка может быть перекрыта шириной шлифовального круга. Круг перемещается с постоянной скоростью движения подачи (мм/об. заг.) до достижения необходимого размера детали. Этот же метод используют при шлифовании фасонных поверхностей и кольцевых канавок. Шлифовальный круг заправляют в соответствии с формой поверхности или канавки.

Глубинным шлифованием (рис. 3, в) за один проход снимают слой материала на всю необходимую глубину. На шлифовальном круге формируют конический участок длиной 8 ... 12 мм. В ходе шлифования конический участок удаляет основную часть срезаемого слоя, а цилиндрический участок зачищает обработанную поверхность. Движение поперечной подачи отсутствует.

Шлифование уступами (рис. 3, г) - это сочетание методов, представленных на рис. 3, а, б. Процесс шлифования состоит из двух этапов. На первом этапе шлифуют врезанием с движением подачи , передвигая периодически стол на 0,8 ... 0,9 ширины круга (показано штриховой линией). На втором этапе делают несколько ходов с движением продольной подачи для зачистки поверхности при выключенном движении подачи .

Во многих случаях на деталях необходимо обеспечить правильное взаимное расположение цилиндрических и плоских (торцовых) поверхностей. Для выполнения этого условия шлифовальный круг заправляют по схеме на рис. 3, д и поворачивают на определенный угол. Шлифуют коническими участками круга. Цилиндрическую поверхность шлифуют аналогично схеме на рис. 3, а с периодическим движением подачи на глубину резания. Обработка торцовой поверхности детали заканчивается чаще всего с подачей вручную или при плавном подводе заготовки к кругу.

Наружные конические поверхности шлифуют по двум основным схемам. При обработке заготовок на центрах (рис. 4, а) верхнюю часть стола поворачивают вместе с центрами на угол а так, что положение образующей конической поверхности совпадает с направлением движения продольной подачи. Далее шлифуют по аналогии с обработкой цилиндрических поверхностей.

При шлифовании с консольным закреплением заготовок (рис. 4, б) на угол а (половина угла конуса) поворачивается передняя бабка.

При измерении размеров шлифуемых поверхностей приходится останавливать станок, что связано со значительной затратой времени. В современной практике широко используют контрольные устройства, измеряющие размеры обрабатываемых поверхностей в процессе шлифования активный контроль.

3.1.2 Обработка заготовок на в внутришлифовальных станках

Внутреннее шлифование применяют для получения высокой точности отверстий на заготовках, как правило, прошедших термическую обработку. Возможно шлифование сквозных, несквозных (глухих), конических и фасонных отверстий. Диаметр шлифовального круга составляет 0,7 ... 0,9 диаметра шлифуемого отверстия. Кругу сообщают высокую частоту вращения: она тем выше, чем меньше диаметр круга.

На рис. 5, а приведена схема шлифования с закреплением заготовки в кулачковом патроне. На внутришлифовальных станках также обрабатывают и внутренние торцовые поверхности. Внутренние фасонные поверхности шлифуют специально заправленным кругом методом врезания.

Внутренние конические поверхности шлифуют с поворотом передней бабки так, чтобы образующая конуса расположилась вдоль направления продольной подачи.

Заготовки больших размеров и массы шлифовать описанными выше методами нерационально. В этих случаях применяют планетарное шлифование (рис. 5, б). Заготовку закрепляют на столе станка неподвижно. Шлифовальный круг вращается вокруг своей оси, а также вокруг оси отверстия, что аналогично движению круговой подачи (положение круга, совершившего в планетарном движении пол-оборота, показано штриховой линией). Планетарным шлифованием можно обрабатывать внутренние фасонные и торцовые поверхности, а также отверстия, положения которых определенным образом связаны друг с другом (например, на деталях типа корпусов).

Рис. 5. Схемы обработки на внутришлифовальных станках

При внутреннем шлифовании поверхностей отверстий малых диаметров (в несколько миллиметров) станки снабжают специальными быстроходными шпинделями. Частота вращения круга доходит до 300 000 1/мин.

3.1.3 Бесцентрово-шлифовальные станки

На бесцентрово-шлифовальных станках можно шлифовать наружные и внутренние поверхности цилиндрических деталей, не имеющих центровых отверстий. Схема шлифования на бесцентрово-круглошлифовальном станке наружной поверхности детали с продольной подачей на проход приведена на рис.5. Деталь 3, поддерживаемая опорной призмой 4, располагается между двумя кругами 1 и 2, из которых Рис.5. Схемы шлифования на шлифовальный 1 снимает припуск с бесцентрово-шлифовальном станке заготовки, а ведущий круг 2 сообщает заготовке вращение (круговую подачу) и продольное перемещение (осевую подачу). Продольная подача сообщается шлифуемой заготовке ведущим кругом в результате установки его под некоторым углом а к оси шлифовального круга или при наклоне опорной призмы на угол а.

Рис. 5. Схемы обработки на бесцентрово-шлифовальных станках

При обдирочном шлифовании угол б - 1.5 ... 6°, а при чистовом а = 0,5 ... 1,5°. В обоих случаях продольную подачу определяют, как произведение окружной скорости ведущего круга и 2 на синус угла наклона а оси круга или призмы:

= sinб .

Для обеспечения цилиндричности ось шлифуемой заготовки должна быть выше центров шлифовального и ведущего кругов примерно на

0,15 -0,25 диаметра детали, но не более чем на 10-12 мм (во избежание вибрации).

При шлифовании по методу врезания оси шлифовального и ведущего кругов устанавливают параллельно друг другу. Деталь, опирающаяся на призму, только вращается (осевая подача отсутствует), а поперечная подача на толщину срезаемого слоя производится перемещением ведущего или шлифующего круга в направлении, перпендикулярном к оси обрабатываемой заготовки, точным ходовым винтом.

Рис. 6. Схемы расположения линии центров

Для шлифования наружных поверхностей выпускают универсальные и специальные бесцентрово-шлифовальные станки. В зависимости от расположения линии центров кругов бесцентрово-шлифовальные станки бывают с горизонтальным расположением линии центров (рис. 6, а) применяемым в большинстве станков средних и малых моделей; с наклонным расположением линии центров (рис. 6, б), применяемым в станках крупных моделей, предназначенных для обработки крупногабаритных деталей, а также при обдирочной обработке (угол наклона линии центров в этих станках обычно равен 30°); с вертикальным расположением линии центров (рис. 6, в). Эти станки получили ограниченное применение.

Бывают с горизонтальным расположением линии центров (рис. 6, а), применяемым в большинстве станков средних и малых моделей; с наклонным расположением линии центров (рис. 6, б), применяемым в станках крупных моделей, предназначенных для обработки крупногабаритных деталей, а также при обдирочной обработке (угол наклона линии центров в этих станках обычно равен 30°); с вертикальным расположением линии центров (рис.6, в). Эти станки получили ограниченное применение.

В зависимости от способа поперечной подачи бесцентрово-шлифовальные станки бывают с перемещением ведущего круга и суппорта с опорной призмой относительно неподвижно закрепленной на станке шлифовальной бабки; с перемещением суппорта с опорной призмой и шлифующего круга по отношению к неподвижно закрепленной на станине бабке ведущего круга; с перемещением шлифующего и ведущего кругов относительно неподвижно закрепленного на станке суппорта с опорной призмой; подача на толщину срезаемого слоя и компенсация изнашивания шлифовального круга в этом случае осуществляются перемещением шлифовальной бабки; бабка ведущего круга подается только при наладке на новый размер детали.

По конструкции привода ведущего круга различают станки со ступенчатым и с бесступенчатым регулированием частоты вращения ведущего круга. По методу базирования детали (рис.7) различают станки с базированием на призме и на башмаках. Базирование на башмаках получило распространение при шлифовании роликовых дорожек подшипниковых колец.

Рис. 7 Схемы базирования детали: а -- на опорной призме; б -- на башмаках; 1 -- шлифовальный круг; 2 -- деталь; 3 -- ведущий круг; 4 -- опорная призма; 5 -- башмаки

3.1.4 Плоскошлифовальные станки

В зависимости от конструкции различают следующие типы плоско-шлифовальных станков: с горизонтальным шпинделем, прямоугольным столом и крестовым суппортом; с горизонтальным шпинделем и прямо-угольным столом общего назначения; с вертикальным шпинделем и прямоугольным столом; с горизонтальным шпинделем и круглым столом; с вертикальным шпинделем и выдвижным круглым столом; с вертикальным шпинделем и круглым столом непрерывного действия; продольно-шлифовальные одностоечные с подвижным столом и с подвижкой стойкой; продольно-шлифовальные двухстоечные; двусторонние торцешлифовальные с горизонтальным шпинделем; двусторонние торцешлифовальные с вертикальным шпинделем.

Плоскошлифовальные стайки с горизонтальным шпинделем, прямоугольным столом и крестовым суппортом предназначены для шлифования поверхностей периферией круга. В пределах, допускаемых кожухом круга, возможно шлифование торцовых поверхностей. Эти станки применяют в основном в инструментальном производстве. В станках этой гаммы предусмотрено 14 моделей, отличающихся размерами обрабатываемых деталей и классом точности выпускаемых станков; три модели для профильного шлифования и шесть моделей с ЧПУ; базовой моделью является ЗЕ711В.

К конструктивным особенностям станков этой гаммы, обеспечивающим повышение жесткости соединений и увеличение точности и долговечности станка, относится применение направляющих качения крестового суппорта, стола и шлифовальной бабки. Шпиндель шлифовального круга смонтирован на Шпиндель шлифовального круга смонтирован на высокоточных подшипниках качения, что обеспечивает высокую жесткость, малую мощность вспомогательного хода, незначительный нагрев и малые температурные деформации инерционных сил, действующих на суппорт в момент реверса стола, он имеет жесткую направляющую, собранную с предварительным натягом.

Эти станки оснащены широким комплексом приспособлений, что расширяет их технологические возможности. Отдельные модификации станков этой группы предназначены для профильного шлифования (ЗЕ711В-1). Для этого в станке предусмотрены механизмы отсчета поперечных и вертикальных перемещений и механизмы фиксации стола и суппорта. В станке 3Е721В-1 для глубинного шлифования предусмотрена также малая скорость перемещения стола (от 0,01 м/мин).

Плоскошлифовальные станки с прямоугольным столом общего назначения выпускают с горизонтальными и вертикальными шпинделями.

По сравнению со станками с крестовым суппортом станки этой группы имеют повышенную жесткость, оснащены шлифовальными кругами больших размеров и электродвигателями большой мощности. Эти станки обеспечивают высокую производительность и достаточно высокую точность обработки.

По степени автоматизации станки этого типа выпускают в двух исполнениях, неавтоматизированные и полуавтоматы с приборами активного контроля. В гамму этих станков входят 10 моделей с горизонтальным; шпинделем, являющихся базовыми, три модели с ЧПУ и восемь моделей с вертикальным шпинделем, из них одна модель с ЧПУ. В станках гаммы принята следующая компоновка (рис. 8). На тумбе, расположенной в центре станка и отлитой за одно целое со станиной 1, закреплена колонна 3, представляющая собой жесткую литую раму с проемом в средней части, по обе стороны проема расположены вертикальные направляющие по которым перемещается каретка 2, имеющая горизонтальные направляющие для поперечного (ручного или гидравлического) перемещения шлифовальной бабки. Размещение каретки и шлифовальной бабки между направляющими повышает жесткость станка. Короткие кинематические цепи (вертикальные направляющие и винт-гайка качения) обеспечивают точные стабильные подачи

Рис.8 Станок 3Д722

Вертикальное перемещение каретки со шлифовальной бабкой может быть ручное или прерывистое автоматическое, осуществляемое механизмом вертикальной подачи, который закреплен на передней стенке станины. Ускоренные перемещения обеспечивают механизм ускоренных вертикальных перемещений, который установлен на задней стенке тумбы станины.

Возвратно-поступательное перемещение стола осуществляется по направляющим станины от двух гидроцилиндров. Для станков класса А применяют гидростатические направляющие, повышающие точность перемещения стола. В станках предусмотрены дистанционное управление столом и шлифовальной бабкой, ограждающие устройства, различные виды блокировок, аварийный отход шлифовальной бабки. Слева за станком расположен агрегат охлаждения, справа -- гидроагрегат и электрический шкаф 5. Сзади станка за тумбой расположена установка для смазывания шпинделя.

На базе станка ЗД722 выпускают станок ЗЕ722, предназначенный для скоростного шлифования. На станке установлен двухскоростной электродвигатель шлифовальной бабки мощностью 11,5/14,5 кВт. Скорость шлифовального круга 70 м/с, что значительно расширяет технологические возможности станка.

Разновидностью станка ЗД722 является станок ЗД722Ф2 который оснащен системой программного управления. Станок работает с двумя скоростями шлифовального круга (35 и 60 м/с) от двухскоростного электродвигателя мощностью 11/14 кВт. Применение ЧПУ позволяет быстро

Станки с вертикальным шпинделем выполнены на станков с горизонтальным шпинделем и отличаются лишь кареткой на которой закреплена шлифовальная бабка. Станки снабжены специальным механизмом с дистанционным управлением для наклона бабки на угол до для уменьшения контакта круга с обрабатываемой поверхностью На базе станка ЗД732 выпускают станок ЗИ732, предназначенный для силового шлифования. Скорость шлифовального круга 60 м/с. В станке предусмотрен широкий диапазон изменения скорости продольного перемещение стола (от 0.2 до 45 м/мин.) электродвигатель главного привода имеет мощность 40 кВт.

Плоскошлифовальные станки с круглым столом и горизонтальным шпинделем выпускают как неавтоматизированными, так и автоматизированными.

Станки имеют наклонный стол, что позволяет шлифовать плоские, выпуклые, вогнутые и конусные поверхности. Станок ЗД741ЛВ гамму состоящую из 12 моделей с диаметрами столов от 250 до 1000 мм и одной модели с ЧПУ.

Станки этой гаммы имеют следующую компоновку. На станине 1 представляющую собой массивную чугунную отливку коробчатой формы по направляющим которой перемещается стол 2, закреплена колонна 3 с проемом, в который может вдвигаться стол. Шлифовальная бабка 4 перемещается в замкнутых прямоугольных направляющих качения, расположенных под проемом колонны, что обеспечивает минимальный вылет шпинделя относительно направляющих. В качестве опор шпинделя применяют гидродинамические подшипники. Привод шпинделя осуществляется плоским ремнем. Вращение стола осуществляется от электродвигателя постоянного тока с помощью клиноременной передачи через шарнирный четырехзвенник и коническую передачу с круговым зубом. Особенностью конструкции является автоматическое регулирование частоты вращения и скорости стола по мере изменения расстояния от центра его вращения до оси шлифовального круга. При продольном перемещении стола поворачивается сельсин-датчик, установленный на плите, изменяющий частоту вращения двигателя привода, а копир закрепленный на тягах четырехзвенника, изменяет скорость подачи стола. Это увеличивает производительность и улучшает качество обработки.

Станок ЗЕ740, позволяющий работать при скорости круга 60 м/с, отличается от станков этого типа повышенной мощностью двигателя, возможностью применения высоких подач, специальной системой охлаждения, включающей два бака вместимостью 300 л, два насоса, коммуникацию охлаждения, электрокоммуникацию, а также усиленным охлаждением шлифовального круга. Охлаждающая жидкость перекачивается из нижнего бака в верхний, при этом происходит ее очистка. Насосы обеспечивают давление 2500 кПа и объемную подачу 25 и 70 л/мин. Первый насос предназначен для подачи жидкости на шлифовальный круг для его очистки, второй -- для подачи жидкости в рабочую зону.

Рис. 9 Станок 3Д741ЛВ

3.1.5 Притирочные станки

Притирка осуществляется притирами, на поверхность которых наносят мелкозернистый абразивный порошок, смешанный со смазочным материалом или пастой. Притиры могут быть чугунные, стальные, бронзовые, свинцовые из твердых пород дерева и т. п. В качестве абразивного порошка используют наждак, электрокорунд, алмазную пыль, карбид кремния и др., а в качестве пасты окись хрома, окись алюминия, крокус, венскую известь и др. Во время притирки абразивный порошок смачивают керосином или скипидаром. На притирку оставляют припуск, примерно равны 0,005-0,02 мм.

На притирочных станках (рис. 10) можно обрабатывать различные наружные и внутренние поверхности, в том числе и плоские, притирать шейки коленчатых валов, кулачки распределительных валиков, концевые меры, пробки-калибры, зубчатые колеса и т. п. В корпусе станины 1 помещен привод притира 5. Притир 3, соединенный со шпинделем станка, помещенным в колонне 2, получает вращательное движение и перемещение по вертикали.

Притирка деталей осуществляется притирами 3 и 5, между которыми помещен сепаратор 4. Обрабатываемые заготовки свободно помещаются в гнездах сепаратора, который расположен либо эксцентрично относительно осей притиров, либо концентрично. В первом случае сепаратор свободно насажен на ось, которая вращается в направлении притира 5. Во втором случае сепаратор получает колебательное возвратно-поступательное движение от отдельного привода.

Сепараторный диск (рис. 11, а) имеет поперечное перемещение для изменения эксцентриситета ? его оси относительно оси вращения металлических притиров; это необходимо для обеспечения равномерного изнашивания притиров. Примерная относительная траектория заготовки во время обработки показана на рис. 11, б.

Универсальный притирочный станок 3816 (рис. 12) предназначен для обработки плоских и цилиндрических поверхностей. Шпиндель 5 станка вращается от электродвигателя (N = 7,8 кВт) через клиноременную передачу , червячную передачу , карданный вал II с двумя универсальными шарнирами и клиноременную передачу .

Рис. 12 Кинематическая схема притирочного станка 3816

В результате этого притир 2 также получает вращательное движение. Вращение нижнему диску 1 переда¬ется от того же электродвигателя через вал III, червячную передачу и втулку 8. При обработке плоских поверхностей сепаратору сообщается принудительное колебательное дви¬жение от кривошипного пальца 3. Палец 3 укреплен в шайбе 7, и его можно радиально перемещать для изменения эксцентриситета, что позволяет изменять величину коле-бательного движения сепаратора. Шайба 7 вращается от вала III через 4 червячную передачу и цилиндрические пары , и вал I . При притирке цилиндрических поверхностей во избежание завала их концов сепа¬ратор остается во время работы неподвижным, для чего выключают муфту 9. Подвод и прижим притира 2 к обрабатываемым заготовкам осуществляется гидромеханизмом, работающим от шиберного насоса, который работает от отдельного электродвигателя мощностью 1 кВт (насос и электродвигатель на схеме не показаны). Гидромеханизм имеет гидроцилиндры 4 и 6, поршневые штоки которых соединены с патроном притира 2. Станок снабжен механизмом для автоматического останова после оконча¬ния притирки, продолжительность которой задается.

3.1.6 Хонинговальные станки

Хонингование выполняют специальным инструментом хонинговальной головкой (хоном), оснащенной мелкозернистыми абразивными брусками. Головка (рис. 13) совершает одновременно вращательное и возвратно-поступательное движения в неподвижном отверстии.

Хонингованием можно получать высококачественную поверхность, а также исправлять некоторые дефекты отверстий (конусность, овальность и др.). При хонинговании в качестве смазочно-охлаждающей жидкости применяют эмульсию или керосин.Бруски 4 хонинговальной головки получают радиальное перемещение с помощью конусов 2 и 5, насаженных на стержень 3 с винтовой резьбой и имеющих возможность сближаться или удаляться друг от друга при вращении стержня 3. При сближении конусы 2 и 5 через пальцы 1 раздвигают абразивные бруски 4, а при удалении -- сдвигают. Таким образом устанавливают бруски на нужный диаметр перед началом обработки. У автоматической хонинговальной головки радиальное перемещение брусков 4 для возможности самоустановки в обрабатываемом отверстии производится автоматически, для чего головку соединяют со шпинделем станка универсальными шарнирами. После каждого двойного хода головки стержень 3 поворачивается и сближает конусы 2 и 5.

В зависимости от вида обработки хонинговальные станки подразделяются на станки для хонингования отверстий и наружных поверхностей, а по расположению и числу шпинделей -- на вертикальные и горизонтальные, одно- и многошпиндельные.

Рис. 14 Вертикальный хонинговальный станок:

Вращение шпинделя у хонинговальных станков (рис. 14) осуществляется обычно от электродвигателя через механическую коробку скоростей. Возвратно-поступательное перемещение шпинделя у вертикальных хонинговальных станков обычно производится с помощью гидравлического привода. В горизонтальных станках для этого используют электромеханический или гидравлический привод.

3.1.7 Станки для суперфиниширования

Суперфиниширование применяют для обработки наружных и внутренних цилиндрических поверхностей. Суперфиниширование производят абразивными брусками, совершающими колебательные возвратно-поступательные движения с большой частотой и малым ходом по поверхности вращающейся заготовки (рис 15). Мягкие, мелкозернистые абразивные бруски во время работы прижимаются к обрабатываемой поверхности пружинами или гидравлическим устройством. При суперфинишировании в качестве смазочно-охлаждающей жидкости применяют смесь керосина с маслом.

Рис. 15 Схемы движений при суперфинишировании: а -- при обработке вала; б -- при обработке внутренней поверхности; в -- при обработке плоскостей; 1 -- возвратно-поступательное движение инструмента; Колебательное движение инструмента; III -- вращение заготовки; IV -- вращение инструмента; V-- колебательное движение заготовки

Припуск на обработку не оставляют, поскольку процесс заключается в снятии микронеровностей, оставшихся от предыдущей обработки. Процесс снятия металла автоматически прекращается при удалении гребешков и увеличении площади соприкосновения брусков с основной поверхностью детали, когда сила прижима оказывается недостаточной для разрыва масляной пленки на поверхности детали.

На станке для суперфиниширования цилиндрических поверхностей деталей колеблющимися брусками (рис.16) заготовку устанавливают в центрах между передней 1 и задней 4 бабками. Заготовка получает вращение от поводкового патрона 2, как и на обычном токарном станке. Абразивные бруски крепят в специальных державках 3, которые получают осевое возвратно-поступательное движение по обрабатываемой поверхности. Движение осуществляется с помощью гидропривода, служащего также для подвода брусков к заготовке и легкого прижима их к ее поверхности. Колебательное движение бруски получают по специальным направляющим от отдельного электродвигателя посредством эксцентрика.

Рис. 16 Станок для суперфиниширования цилиндрических поверхностей

Скорость вращения детали составляет 2-20 м/мин, продольная подача -- 0,1-0,15 мм/об, а число колебательных движений брусков в минуту 500-1800.

3.2 Шлифовальные круги

3.2.1 Абразивные материалы

Абразивный материал - это естественный или искусственный материал, преимущественно высокой твердости. К естественным абразивным материалам относится алмаз, кварц, корунд, наждак, кремень, гранит. К искусственным - нормальный электрокорунд, хромистый электрокорунд, титанистый электрокорунд, монокорунд, зеленый и черный карбид кремния, карбид бора, синтетические алмазы, кубический нитрат бора, и другие.

Основными свойствами абразивных материалов является твердость, абразивная способность, прочность и износостойкость.

Алмаз естественный (А) представляет собой разновидность углеродов, обладает наивысшей твердостью из всех известных естественных и искусственных абразивных материалов, но хрупок. Естественные алмазы содержат наибольшее количество (от 0.02% до 4.8%) примесей окислов алюминия, железа, кальция, кремния, марганца, титана и др. Алмазы, непригодные для изготовления украшений называют техническими и используют для шлифования металлов. Массу алмаза измеряют в граммах и каратах; 1 кар = 0.2 г.

Алмаз синтетический (АС). Для получения синтетических алмазов используют углеродсодержащие вещества с применением катализаторов. В качестве углеродсодержащего вещества наиболее часто применяют графит, реже - сажу или древесный уголь, а в качестве катализатора - металл (хром, никель, железо, кобальт и др.). Под действием высокой температуры и давления происходит образование синтетического алмаза.

В зависимости от размеров зерен, методов их получения и контроля порошки из синтетических алмазов делят на шлифпорошки и микропорошки.

Существует пять марок шлифпорошков из синтетических алмазов, которые различаются в основном механическими свойствами (прочностью, хрупкостью), а также формой и параметрами шероховатости:

АСО - зерна с шероховатой поверхностью, обладают пониженной прочностью и пониженной хрупкостью, работают с минимальными потреблением и энергией и выделением теплоты, обладают хорошими режущими свойствами;

АСР - зерна с меньшей хрупкостью и большей прочностью по сравнению с АСО и хорошо удерживаются в связке;

АСВ - зерна с меньшей хрупкостью и большей прочностью, чем АСО и АСР, имеют по сравнению сними более гладкую поверхность;

АСК - зерна с меньшей хрупкостью и большей прочностью по сравнению с АСО, АСР, АСВ;

АСС - зерна имеют максимальную прочность по сравнению с алмазами других марок и представляют собой зерна блочной формы. Прочность зерен АСС выше прочности естественных алмазов.

Алмазные микропорошки выпускают: 1) с нормальной абразивной режущей способностью (АМ) из естественного алмаза и из синтетических алмазов (АСМ); 2) с повышенной абразивной способностью из природных (АН), синтетических (АСН) алмазов.

В институте сверхтвердых материалов АН УССР создан новый сверхтвердый материал «Славутич», который, не уступая алмазам по износостойкости, превосходит их по прочности.

Электрокорунды состоят из окиси алюминия Al2O3 и его примесей. Содержания окиси алюминия 93-96% в нормальном электрокорунде и монокорунде. Разновидности электрокорундов различаются содержанием окиси алюминия. Нормальный электрокорунд 1А выплавляют из бокситов; его разновидности 12А, 13А, 14А и 16А. При содержании, например, 92% окиси алюминия нормальный электрокорунд обозначают 13А, 93% - 14А и так далее. Белый электрокорунд 2А выплавляют из глинозема; его разновидности - 22А, 23А, 24А, 25А. Белый электрокорунд содержит не менее 97% окиси алюминия. При содержании 98% окиси алюминия белый электрокорунд обозначают 22А а свыше 99.3% - 25А.

Легированные электрокорунды выплавляют из глинозема с различными добавками. К этим электрокорундам относится хлористый электрокорунд 3А; его разновидности 32А, 33А, 34А, а также титанистые электрокорунд 37А. Окислы хрома и титана упрочняют кристаллическую решетку окиси алюминия и одновременно придают зерну очень высокую вязкость, приближающуюся к вязкости нормального электрокорунда.

Циркониевый электрокорунд изготовляют на базе белого электрокорунда с добавкой окиси циркония. Он имеет очень высокую прочность. Шлифовальные круги из циркониевого электрокорунда, изготовленные по технологии горячего прессования, обладают стойкостью в 10-20 раз превышающей стойкость инструмента, изготовленного из нормального электрокорунда по обычной технологии. Вследствие незначительного нагревания заготовки на обрабатываемой поверхности не возникает прижогов. Циркониевый электрокорунд обозначается 38АМ, содержит 18-25% двуокиси циркония, зернистость 250-125.

За последние годы в нашем государстве созданы абразивные материалы из легированного электрокорунда повышенной стойкости и прочности: хромотитанистый 91А и 92А, ванадиевый, формокорунд, электрокорунд и другие.

Перспективны круги из хромотитанистого электрокорунда 91. При их использовании на операциях плоского и круглого наружного шлифования и других видов шлифования стойкость шлифовальных кругов повышается до 2.5 раза, производительность в 2 раза, обработка без прижогов.

Монокорунд 4А выплавляют из боксита сернистым железом и восстановителем с последующим выделением монокристалла корунд. Выпускают монокорунд марок 43А, 44А, 45А; он особенно эффективен при обработке жаропрочных и кислотоупорных сталей.

Карбид кремния представляет собой химическое соединение кремния и углерода, получаемое из кокса и кварцевого песка в электрических печах при нагреве их до температуры 2100-22000 С и содержит около 97-99% SiC. Карбид кремния является ценным шлифующим материалом. Он имеет зерна темно-синей и зеленой окраски с красивым цветом побежалости и металлическим блеском. В зависимости от содержания (%) чистого карбида кремния этот материал делят на зеленый (6С) и черный (5С). Зеленый карбид кремния имеет повышенную по сравнению с черным хрупкость и содержит чистого кремния не менее 97%. Он выпускается следующих разновидностей: 62С, 63С и 64С. Черный карбид кремния в зависимости от содержания карбида кремния выпускают следующих разновидностей: 52С, 53С, 54С и 55С.

Важнейшими свойствами этого абразивного материала являются высокие твердость (тверже его только алмаз, эльбор и карбид бора) и абразивная способность, которая объясняется тем, что его зерна имеют острые режущие грани. Под абразивной способностью понимают способность абразивных зерен обрабатывать тот или иной материал. Карбид кремния очень теплостоек; он способен выдерживать температуру до 20500 С.

Карбид бора (КБ) представляет собой химическое соединение B4C, он обладает высокими абразивной способностью, износостойкостью и химической стойкостью.

Кубический нитрид бора (КНБ) - сверхтвердый материал, впервые получен в 1957г. и содержит 43.6% бора 56.4% азота. Несмотря на несколько меньшую твердость, кубический нитрид бора обладает почти теми же абразивными свойствами, что и алмаз, но превосходит по износостойкости все известные абразивные материалы, применяемые в технике. Кубический нитрид бора выгодно отличается от алмаза своей высокой теплостойкостью. Он не теряет своих режущих свойств даже при температуре 12000 С; шлифовальные круги из него отличаются высокой стойкостью. Их применение повышает точность и качество детали, резко сокращает время на правку.

Абразивные материалы из кубического нитрида бора в СССР выпускают в виде шлифпорошков - эльбор (Л) и кубонит (КО) - и микропорошков (КМ).

Зернистость абразивного материала приведена ниже.

Шлифзерно - 200, 160, 125, 100, 80, 63, 50, 40, 32, 25, 20, 16

Шлифпорошки - 12, 10, 8, 6, 5, 4

Микропорошки - М63, М50, М40, М28, М20, М14, М10, М7, М5

шлифование абразивный инструмент

3.2.2 Связка шлифовального круга

Связка - вещество или совокупность веществ, применяемых для закрепления зерен в инструменте. Связки делят на неорганические и органические. К неорганическим связкам относят керамическую, силикатную и магнезиальную; к органическим бакелитовую и вулканитовую. Наибольшее применение имеют керамические, бакелитовые и вулканитовые связки.

Керамическая связка (К) состоит из огнеупорной глины, полевого шпата, кварца, мела, талька и других составляющих. Круги, изготовленные на керамической связке, имеют наибольшую пористость и поэтому меньше засаливаются, легко режут металл и обладают хорошей водоупорностью, допускают шлифование с охлаждением. Недостатком керамической связки является хрупкость, которая делает абразивные инструменты чувствительными к ударной нагрузке.

Силикатную связку (С) изготовляют из жидкого стекла, которое смешивают с окисью цинка, мелом, глиной и др. Силикатная связка обладает достаточной прочностью. Круги на такой связке быстро изнашиваются, но работают с малым выделением теплоты при резании. Их применяют, когда поверхность заготовки чувствительна к повышению температуры при шлифовании. Круги на силикатной связке обычно используют без охлаждения.

Магнезиальная связка состоит из акустического магнезита и раствора хлористого магния. Она имеет ограниченное применение, так как круги, изготовленные на ней, неоднородны, быстро неравномерно изнашиваются. Они гигроскопичны, их можно использовать только для сухого шлифования.

В бакелитовой связке (В) главной составляющей является жидкий или порошкообразный бакелит (искусственная смола). Круги на такой связке обладают большой прочностью, но быстро изнашиваются. При тяжелых условиях работы, когда температура в зоне резания достигает 3000С и более, связка начинает выгорать, а зерна преждевременно выкрашиваются. Указанные круги используют главным образом без охлаждения. Бакелитовая связка несколько разрушается под действием щелочных растворов, находящихся в охлаждающей жидкости. Поэтому охлаждающая жидкость в случае применения кругов на этой связке не должна содержать свыше 1.5% щелочи.

Упругость связки дает возможность изготовлять тонкие круги (высотой 0.5 мм) для абразивной прорезки. Эти свойства бакелитовой связки обеспечили ей широкое распространение в производстве абразивных инструментов. Из-за больших прочности и упругости бакелитовой связи шлифовальные круги, изготовленные на ней, могут работать с повышенными скоростями (50-65 м/с).

Вулканитовая связка (В) состоит главным образом из синтетического каучука с различными добавками, которые влияют на твердость, прочность и эластичность инструмента. Круги на вулканитовой связке обладают большей упругостью, чем на бакелитовой, и поэтому применяются для абразивной прорезки.

3.2.3 Твердость абразивного инструмента

Твердость абразивного инструмента - величина, характеризующая его свойство сопротивляться нарушению сцепления между зернами и связкой при сохранении характеристик инструмента в пределах установленных норм. Понятие о твердости абразивного инструмента не имеет ничего общего с твердостью абразивного материала, который характеризует способность его проникать в другие тела. Из зерен самого твердого абразивного материала можно изготовит мягкий абразивный инструмент, и наоборот. Обычно мягким абразивным инструментом называют такой, из которого абразивные зерна легко выкрашиваются, а твердым - из которого зерна выкрашиваются с трудом. Согласно стандарту, ниже приведена шкала твердости шлифовальных кругов:

Мягкий М1, М2, М3

Среднемягкий СМ1, СМ2

Средний С1, С2

Среднетвердый СТ1, СТ2, СТ3

Твердый Т1, Т2

Весьма твердый ВТ1, ВТ2

Чрезвычайно твердый ЧТ1, ЧТ2

3.2.4 Форма и маркировка шлифовальных кругов

Шлифовальные круги изготавливают различных форм (табл. 1). Наибольшее применение находят плоские круги прямого профиля (ПП). Их применяют для круглого, наружного и внутреннего шлифования, плоского шлифования периферии круга, заточки инструмента и ручного обдирочного шлифования.

Маркировка шлифовальных кругов. Для выбора шлифовального круга необходимо знать его характеристику, которую наносят на поверхность круга в виде условных обозначений.

Условные обозначения располагают в определенной последовательности. Они дают полную характеристику шлифовального круга и указывают, с какой окружной скоростью безопасно работать. Эти обозначения представляют собой паспорт шлифовального круга.

Пример. Маркировка КАЗ24А40С25К 35 м/с ПП350*40*125А обозначает:

КАЗ - Косулинский абразивный завод;

24А - марка абразивного материала (белый электрокорунд);

40 - зернистость, размер зерна основной фракции 500-400 мкм;

С2 - степень твердости;

5 - номер структуры;

К - вид связки (керамическая);

35 м/с - окружная скорость, при которой обеспечивается безопасная работа;

ПП - форма круга (плоский круг прямого профиля);

350*40*127 - размеры шлифовального круга в мм (наружный диаметр, высота, диаметр отверстия);

А - класс круга;

3.3 Смазочно-охлаждающие жидкости

Для вывода из зоны резания выделяющейся теплоты, уменьшения трения и удаления отходов шлифования применяют охлаждение различными смазочно-охлаждающими жидкостями (СОЖ). По составу и свойствам СОЖ, применяемые при шлифовании, делят на эмульсию и масла.

Эмульсией называют жидкость, в которой во взвешенном состоянии находятся микроскопические частицы другой жидкости. Основой шлифовальной эмульсии является вода с добавлением небольшого количества специальных присадок, обеспечивающих смазочный эффект.

Охлаждающая жидкость, смывая абразивно-металлическую пыль, улучшает качества шлифуемой поверхности. Охлаждающие жидкости не должны содержать ядовитых примесей, вызывающих кожные заболевания у рабочих, не должны разъедать металл и краску станка. Чем больше площадь поверхности соприкосновения заготовки с шлифовальным кругом и тверже материал обрабатываемой заготовки, тем большее количество охлаждающей жидкости необходимо подавать в зону шлифования. Охлаждающую жидкость следует равномерно подавать на всю высоту шлифовального круга. Количество подаваемой жидкости зависит от высоты шлифовального круга: на каждые 10мм высоты круга расходуют примерно 5-8 литров жидкости.

Последнее время появились СОЖ, которые по своим свойствам превосходит соответствующие товарные образцы: углеродистые жидкости (масла) МР-1 и ОСМ-3, а также эмульсии «Укринол-1», «Аквол-2» и др.

Масло МР-1 по внешнему виду светло-коричневая маслянистая жидкость, имеющая при 200С плотность 0.8-0.93 г/см3 и кинематическую вязкость при 500С 14-19 мм2/с. Это масло применяют как при обычном, так и при скоростном шлифовании. Масло ОСМ-3 по внешнему виду маслянистая жидкость от желтого до коричневого цвета, имеющая при 200С плотность 0.8-0.9 г/см3 и кинематическую вязкость при 500С 6-9 мм2/с. Это масло рекомендуется применять для обработки чугуна и стали при хонинговании, шлифовании и супершлифовании.

Основу эмульсолов «Укринол-1» и «Аквол-2» также составляет минеральное масло, в которое вводят присадки, обеспечивающие его эмульгируемость в воде.

«Укринол-1» по внешнему виду прозрачная маслянистая жидкость, имеющая плотность при 200С 0.9-0.97 г/см3 и кинематическую вязкость при 500С 30-60 мм2/с. Эту эмульсию рекомендуют при всех условиях шлифования.

«Аквол-2» по внешнему виду - прозрачная жидкость, маслянистая, темно-коричневого цвета, имеющая плотность при 200С 0.9-0.99 г/см3 и кинематическую вязкость при 500С 38-65 мм2/с. Рекомендуется при скоростном шлифовании дорожек колец подшипников.

Применение указанных СОЖ обеспечивает повышение стойкости шлифовальных кругов, снижение шероховатости шлифуемой поверхности и повышение производительности труда.

4. Способы повышения эффективности процесса шлифования

4.1 Скоростное шлифование

Скоростное шлифование. Шлифование со скоростью круга V=60 м/с и выше называют скоростным. При скоростном шлифовании увеличивается: период стойкости шлифовального круга, объем снимаемого металла, а следовательно, производительность шлифования, мощность, затрачиваемая на шлифование, выделение теплоты в зоне шлифования. Уменьшаются: силы резания, параметр шероховатости шлифуемой поверхности, время на выхаживание, отклонения размера и формы готовой детали.


Подобные документы

  • Особенности процесса резания при шлифовании. Структура и состав используемого инструмента. Форма и спецификация шлифовальных кругов, учет и нормативы их износа. Восстановление режущей способности шлифовального инструмента. Смазочно-охлаждающие жидкости.

    презентация [1,7 M], добавлен 29.09.2013

  • Литье под низким давлением. Обработка на шлифовальных станках. Характеристика и маркировка шлифовальных кругов. Сварка в углекислом газе. Классификация шлифовальных станков. Свариваемые материалы, способы, оборудование. Продукция прокатного производства.

    контрольная работа [2,6 M], добавлен 04.07.2015

  • Сущность технологических операций шлифования и соответствующие им виды работ. Отличительная особенность шлифовальных станков, виды режущего инструмента и абразивного материала. Конструкция станков, выбор режима шлифования, настройка и правила работы.

    реферат [309,2 K], добавлен 30.05.2010

  • Устройство внутришлифовального станка ЗА252. Абразивные материалы и их характеристика, формы шлифовальных кругов. Условные обозначения на абразивном инструменте и цветовая маркировка рабочей скорости. Методика измерения деталей рычажным микрометром.

    отчет по практике [1,5 M], добавлен 20.07.2011

  • Заготовки фасонного монолитного инструмента из твердого сплава. Припаивание пластин из твёрдых сплавов. Процесс шлифования. Смазочно-охлаждающие жидкости. Затачивание и доводка алмазными кругами. Шлифование многогранных неперетачиваемых пластин.

    курсовая работа [8,8 M], добавлен 27.12.2008

  • Методы проектирования систем применения смазочно-охлаждающих жидкостей на операциях шлифования. Математическая модель процесса очистки СОЖ от механических примесей в фильтрах и баках-отстойниках. Исследование движения жидкости и механических примесей.

    дипломная работа [439,5 K], добавлен 23.01.2013

  • Основные особенности обработки деталей плоским шлифованием торцом круга на токарно-винторезном станке 1К62. Анализ интенсивности и глубины распространения наклепа, величины и характера остаточных напряжений. Частота вращения шлифовального круга.

    доклад [36,0 K], добавлен 06.02.2012

  • Обзор математических моделей и зависимостей для расчета контактных температур. Распределение тепловых потоков между заготовкой, стружкой и шлифовальным кругом в зоне шлифования. Определение массового расхода смазочно-охлаждающей жидкости для шлифования.

    лабораторная работа [95,6 K], добавлен 23.08.2015

  • Выбор исходной заготовки детали "вал". Назначение технологических баз. Разработка технологического маршрута изготовления детали. Расчет припусков, межоперационных размеров. Выбор модели станка. Обработка на шлифовальных станках. Абразивные материалы.

    курсовая работа [6,0 M], добавлен 25.04.2015

  • Особенности и понятие обработки методом шлифования, способы и режимы. Зернистость абразивных материалов и структура шлифовального круга, его назначение, применение и выбор. Типы круглошлифовальных станков, их строение и конструктивные особенности.

    курсовая работа [6,0 M], добавлен 07.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.