Металлы и сплавы

Определение механических свойств конструкционных материалов путем испытания их на растяжение. Методы исследования качества, структуры и свойств металлов и сплавов, определение их твердости. Термическая обработка деформируемых алюминиевых сплавов.

Рубрика Производство и технологии
Вид учебное пособие
Язык русский
Дата добавления 29.01.2011
Размер файла 7,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

7. Как изменяются структура и свойства при нагреве деформированных металлов? Что представляет собой рекристаллизация, каковы ее виды?

8. Как можно определить температуру начала рекристаллизации?

9. Что называется критической степенью деформации?

10. Что представляют собой холодная и горячая пластические деформации? Какие виды деформации возможны еще?

Лабораторная работа № 5

Диаграммы состояния двойных систем, структура и свойства сплавов

Цель работы

1. Изучить принципы и правила построения диаграмм состояния сплавов.

2. Построить основные типы диаграмм состояния, определить значения их линий и точек.

3. Приобрести практические навыки проведения фазового анализа и определения количественного соотношения фаз в зависимости от концентрации компонентов и температуры.

4. Изучить и зарисовать микроструктуры сплавов.

5. Установить закономерности изменения свойств сплавов с разным типом диаграмм состояния.

Содержание работы

Диаграмма состояния сплава представляет собой графическое изображение равновесного состояния сплавов в зависимости от температуры и концентрации (начиная с температур плавления).

Диаграмма состояния позволяет для конкретных сплавов проследить за процессами, происходящими в сплаве при нагревании и охлаждении; определить сплавы, которые обладают хорошими литейными свойствами, а также сплавы, изменяющие физико-механические свойства путем термической обработки; правильно установить режимы термической, химико-термической обработки и обработки давлением; указать, какую структуру будут иметь сплавы в равновесном состоянии (медленно охлажденные), в некоторых случаях по микроструктуре рассчитать химический состав сплава; правильно выбрать состав сплава, который будет обладать необходимыми свойствами, и т.д.

Некоторые положения теории сплавов

Сплавом называется вещество, полученное сплавлением или спеканием двух или более компонентов. Способы получения однородной монолитной массы сплава могут быть различными: кристаллизация из расплава; конденсация из газообразной фазы; спекание порошков или гранул.

Закономерности взаимодействия элементов при любом способе получения сплавов одинаковы. Рассмотрим сплавы, полученные кристаллизацией из расплавов.

Компонентами называются химические элементы или устойчивые химические соединения, входящие в состав сплава. Компоненты могут образовывать одну или несколько фаз.

Фазой называется простейшая структурная составляющая часть сплава, отделенная от других частей границами раздела, при переходе через которые наблюдается резкое изменение свойств. Фаза может распределяться по многим объемам (кристаллам), но во всех механически разобщенных объемах будут наблюдаться одинаковый химический состав, агрегатное состояние и свойства.

Структурной составляющей сплава называется структурно обособленная часть сплава, имеющая под микроскопом однородное строение. Структурная составляющая может быть многофазной.

Системой сплавов называется совокупность всех возможных сплавов на основе двух или более компонентов, например система «железоцементит».

Фазы в металлах и сплавах

В сплавах бывают жидкие и твердые фазы. Считается, что в жидком

состоянии компоненты, как правило, неограниченно растворяются друг в друге, поэтому сплавы различают по фазовому и структурному составу в твердом состоянии.

Характеристика твердых фаз в сплавах

Твердыми фазами в сплавах могут быть:

а) чистые компоненты;

б) твердые растворы замещения;

в) твердые растворы внедрения;

г) химические соединения;

д) интерметаллидные соединения.

Иногда в карбидах могут образовываться твердые растворы вычитания.

Чистые компоненты выделяются из жидкой фазы в виде кристаллов различной величины в тех случаях, когда компоненты совершенно не растворяются друг в друге в твердом состоянии, например, в сплавах свинец-сурьма, серебро-свинец, олово-цинк и др.

Твердым раствором называется однофазная структура с кристаллической решеткой, образованной атомами компонентов, входящих в состав сплава. Компонент, кристаллическая решетка которого сохраняется, называется растворителем; компонент, который не сохраняет свою кристаллическую решетку, а отдает свои атомы в решетку растворителя, - растворимым.

Различают два основных типа твердых растворов: замещения и внедрения.

Твердые растворы замещения образуются путем замещения атомами растворенного вещества атомов растворителя в его кристаллической решетке. Твердые растворы могут состоять из двух и более компонентов, но в сплаве такой твердый раствор представляет собой одну фазу.

Твердые растворы обычно обозначаются буквами , и т.д. Твердые растворы замещения могут быть с ограниченной и неограниченной растворимостью компонентов друг в друге.

Твердые сплавы замещения с неограниченной растворимостью образуются при соблюдении следующих условий:

а) компоненты должны иметь одинаковый тип кристаллической решетки (должны быть изоморфными);

б) различие атомных параметров должно быть небольшим (8…15%);

в) компоненты должны иметь близкие физические свойства, одинаковую или мало отличающуюся электроотрицательность. Твердый раствор замещения представляет собой одну фазу.

Твердые растворы внедрения образуются путем внедрения отдельных атомов растворенного вещества в свободные поры кристаллической решетки растворителя. Эти твердые растворы характеризуются ограниченной растворимостью растворяющегося компонента, который, как правило, имеет значительно меньший атомный радиус. Растворяющийся компонент не имеет своей кристаллической решетки. Раствор внедрения представляет собой одну фазу.

Химические соединения разнообразные фазы, характеризующиеся тем, что они имеют свои свойства, кристаллическую решетку и температуру плавления, в соединении сохраняется простое кратное соотношение атомов компонентов, которое можно выразить формулой АmВn. Образование химических соединений сопровождается определенным тепловым эффектом. Наиболее часто встречаются следующие химические соединения: карбиды, нитриды, оксиды, сульфиды, бориды и др.

Интерметаллидные соединения химические соединения между металлами. Выделение их в отдельную группу по сравнению с обычными химическими соединениями целесообразно из-за их особой роли в процессах дисперсионного упрочнения металлов и сплавов при термообработке. Упрочняющими мелкодисперсными интерметаллидными фазами могут быть, например, интерметаллиды СиZn2, СиВе, Ni3Al, Ni3Mo и др.

Гетерогенные структуры

Механические смеси могут состоять из чистых компонентов, твердых растворов, химических соединений и т.д. При образовании механической смеси кристаллические решетки фаз не изменяются. Кристаллиты механической смеси связываются между собой только общими границами. Различают эвтектическую и эвтектоидную механические смеси.

Эвтектическая механическая смесь образуется при строго определенной постоянной температуре из жидкого раствора строго определенного химического состава.

Эвтектоидная механическая смесь также образуется при строго определенной постоянной температуре, но только при распаде твердого раствора строго определенного химического состава.

Правило фаз Гиббса

Процессы, происходящие в металлах и сплавах при их фазовых превращениях, подчинены общему закону равновесия, который называется правилом фаз Гиббса. С помощью правила фаз можно определить количественную зависимость между числом степеней свободы, числом компонентов и фаз в условиях равновесия.

В общем виде правило фаз выражается следующим уравнением:

С = К Ф + n,

где С - число степеней свободы. Под числом степеней свободы подразумевается количество независимых переменных, изменение которого не приводит к изменению состояния равновесия системы, т.е. к изменению числа фаз, находящихся в равновесии. К независимым переменным относятся концентрации каждого компонента в каждой фазе и внешние факторы - температура и давление;

К - количество компонентов, образующих систему;

Ф - число фаз, находящихся в равновесии;

n - количество внешних факторов (температура и давление). Учитывая, что все превращения в сплавах происходят при постоянном давлении, для металлических систем переменным внешним фактором будет только температура, т.е. n = 1.

При С = 0 система не имеет ни одной степени свободы (система нонвариантна), т.е. фазы находятся в равновесии при строго определенной температуре и концентрации.

Если С = 1, то это значит, что система при данных условиях имеет одну степень свободы (система моновариантна), т.е. если изменить внешний фактор (температуру), то изменится концентрация жидкой и твердой фаз, но равновесие не нарушится.

При С = 2 система при данных условиях имеет две степени свободы, т.е. существует область, в которой можно изменить температуру и концентрацию сплава, не нарушая равновесия.

Правила построения диаграмм состояния

Диаграммой состояния называется график зависимости температур фазовых превращений от концентраций сплавов.

Диаграммы состояния строят на основе термического анализа, в результате которого получают кривые охлаждения. Расплавленный металл помещают в калориметр и медленно охлаждают с постоянным теплоотводом. Так как фазовые превращения в металлах и сплавах сопровождаются тепловыми эффектами, то на кривых охлаждения в координатах "температуравремя" можно наблюдать либо остановки (площадки) тогда фазовые превращения происходят при постоянных температурах, либо перегибы за счет изменения скорости охлаждения тогда фазовые превращения протекают в интервале температур.

Температуры начала и конца фазовых превращений, которые определяются по кривым охлаждения, называются критическими, а соответствующие им точки на кривых охлаждения критическими точками.

Диаграмма состояния сплавов, компоненты которых не растворяются друг в друге в твердом состоянии

Сплавы, затвердевающие в соответствии с данной диаграммой, характеризуются тем, что их компоненты:

в жидком состоянии растворяются друг в друге в любых соотношениях;

в твердом состоянии совершенно не растворяются один в другом;

не образуют между собой химических соединений;

не имеют аллотропических превращений.

Такой тип диаграммы имеют, например, сплавы: свинец-сурьма, серебро-свинец, алюминий-олово, свинец-барий, кадмий-висмут, олово-цинк.

Рассмотрим построение диаграммы состояния "свинецсурьма" (PbSb). Для этого берут чистые свинец и сурьму и на их основе готовят ряд сплавов с различным содержанием компонентов. Сплавы расплавляют и при медленном охлаждении с постоянным теплоотводом записывают кривые охлаждения (рис. 5.1).

Начальные точки каждой кривой охлаждения соответствуют нулевому отсчету времени и отвечают жидкой фазе. Точки излома и горизонтальные площадки являются критическими точками. Чистый свинец (кривая 1) имеет только одну критическую точку при температуре плавления (327С). Чистая сурьма (кривая 6) также имеет одну критическую точку, которая соответствует 631°С. Сплав, содержащий 13% сурьмы и 87% свинца (эвтектический сплав), имеет также одну критическую точку, выраженную горизонтальной площадкой при температуре 246°С (кривая 3). Все остальные сплавы (кривые 2, 4, 5) имеют по две критические точки.

Температуры начала кристаллизации у этих сплавов различны, а температура конца кристаллизации у всех сплавов одна и та же и равна 246°С.

Построение диаграммы состояния проводится в координатах "температураконцентрация компонентов".

Рис. 5.1. Построение диаграммы состояния «свинецсурьма» по кривым охлаждения

На оси концентраций крайние точки соответствуют чистым компонентам: левая ордината - 100% Pb, правая - 100% Sb. Каждая точка этой оси характеризует сплав определенной концентрации. Проводим ординаты сплавов, для которых построены кривые охлаждения, и переносим на них критические точки. оединив линией точки начала кристаллизации сплавов, олучим линию АСВ линию ликвидус.

Линией ликвидус называется геометрическое место точек на-ала кристаллизации. Выше этой линии все сплавы данной системы находятся в жидком состоянии.

Соединив точки конца кристаллизации, получим линию ДСЕ линию солидус.

Линией солидус называется геометрическое место точек конца кристаллизации. Ниже этой линии все сплавы находятся в твердом состоянии. Линия солидус на диаграммах данного типа является ли-нией эвтектического превращения, так как на ней происходит кристаллизация эвтектики.

Эвтектика представляет собой мелкодисперсную механическую смесь компонентов (свинца и сурьмы) рис. 5.2) ли фаз. Она имеет постоян-ный состав и наименьшую температуру плавления. Затвердевание эвтектики происходит при постоянной температуре.

Рис. 5.2. Микроструктура эвтектического сплава, х250 (Pb - 87%, Sb - 13%)

Сплавы левее точки С называются доэвтектическими, а правее заэвтектическими. При кристаллизации сплавов, отличающихся по составу от эвтектического, в первую очередь ниже линии ликвидус кристаллизуется избыточный по сравнению с эвтектическим составом компонент. В доэвтектических сплавах ниже линии АС кристаллизуется свинец (рис. 5.3).

Рис. 5.3. Микроструктура доэвтектического сплава, х250 (Pb - 94%, Sb - 9%).

Первичные кристаллы свинца и эвтектика

В заэвтектических сплавах ниже линии СВ кристаллизуется сурьма (рис. 5.4).

Рис. 5.4. Микроструктура заэвтектического сплава, х250 (Pb - 70%, Sb - 30%)

Первичные кристаллы сурьмы и эвтектика

Для анализа фазового состава в любой точке двухфазной области через эту точку (например N, рис. 5.1) проводится горизонтальный отрезок влево и вправо до пересечения с линиями диаграммы. Этот отрезок (ав) называется конодой.

Имея коноду, можно ответить на следующие вопросы:

1. Какие фазы существуют в данной точке (N)? В точке N существуют те фазы, которые находятся в равновесии на концах коноды (жидкость в точке «а» и кристаллы чистого компонента Sb в точке «в»).

2. Каков состав соответствующих фаз? Состав их таков, каков он в точках на концах коноды (жидкость в точке N имеет состав точки «а», а твердая фаза Sb - состав точки «в»).

3. Каково количественное соотношение фаз? Если всю конодупринять за 100%, то соотношение отрезков аN и Nв дает соотношение фаз. Здесь действует правило обратной пропорциональности. Отрезок, прилегающий к жидкой фазе (аN), показывает количество твердой фазы, а отрезок, прилегающий к твердой фазе (Nв), - количество жидкой фазы.

Например, количество жидкой фазы в точке N

,

а количество твердой фазы в точке N (кристаллов Sb)

.

Так как на линии DСЕ во всех сплавах кристаллизуется эвтектика, а при последующем охлаждении вплоть до комнатной температуры структурных изменений в сплавах не происходит, то структура доэвтектических сплавов будет состоять из крупных кристаллов свинца и эвтектики, заэвтектических из крупных кристаллов сурьмы и эвтектики, а эвтектического сплава только из эвтектики.

Диаграмма состояния сплавов с неограниченной растворимостью компонентов друг в друге в твердом состоянии.

Неограниченные твердые растворы замещения в твердом состоянии образуют компоненты с однотипной кристаллической решеткой, имеющие небольшую разницу в параметрах решетки и близкие по физическим свойствам. К таким сплавам относятся системы: медьникель, медьзолото, медьплатина, золотосеребро, железоникель, железованадий и др.

Построение диаграммы состояния неограниченных твердых растворов проводится так же, как и построение диаграмм состояния эвтектического типа по кривым охлаждения (рис. 5.5).

Рис. 5.5. Построение диаграммы состояния «никельмедь» по кривым охлаждения

Кривые охлаждения 1 и 5 характеризуют кристаллизацию никеля и меди при постоянной температуре, равной температуре их плавления. Кристаллизация всех других сплавов (кривые 2, 3, 4) протекает при переменной температуре, и характер кривых охлаждения для всех сплавов будет один и тот же.

Перенеся критические точки с кривых охлаждения на ординаты с соответствующим составом сплавов и соединив одноименные точки линиями, получим верхнюю, слегка выпуклую, линию линию начала кристаллизации (ликвидус) и нижнюю, слегка вогнутую, линию линию конца кристаллизации (солидус).

На этой диаграмме выше линии ликвидус все сплавы представляют собой жидкий раствор компонентов, между линиями ликвидус и солидус жидкий и твердый () растворы, а ниже линии солидус все сплавы однофазны и состоят из -твердого раствора.

Кристаллизация сплавов данной системы начинается ниже линии ликвидус и заключается в выделении из жидкого раствора кристаллов твердого раствора. Состав жидкой фазы при понижении температуры будет изменяться по линии ликвидус, состав твердой фазы - по линии солидус. В момент окончания процесса кристаллизации при достаточной скорости диффузии концентрация твердого раствора должна быть равна исходной концентрации сплава.

Как и в предыдущем случае, в двухфазной области между линиями ликвидус и солидус для любой точки можно определить фазовый состав, концентрацию фаз и их количественное соотношение. Например, возьмем точку М, проведем через нее коноду, которая пересечет линию ликвидус в точке «в», а линию солидус в точке «а». Состав жидкой фазы в точке М определяется абсциссой точки «в», а именно «в» а состав твердой фазы координатой точки «а», т.е. «а».

Количество твердой фазы

,

количество жидкой фазы

.

Так как все сплавы в твердом состоянии представляют собой однофазный твердый раствор, то микроструктура всех сплавов будет однотипной. На микрошлифах выявляются только границы зерен. Кроме того, чем больше в сплаве меди, тем более розовой будет его структура, приближаясь постепенно к цвету меди.

Диаграмма состояния сплавов с ограниченной растворимостью компонентов друг в друге в твердом состоянии

Сплавы, затвердевающие в соответствии с диаграммой состояния ограниченных твердых растворов, характеризуются тем, что в жидком состоянии компоненты растворяются друг в друге неограниченно, а в твердом состоянии образуют ограниченные твердые растворы и эвтектику. Такой тип диаграммы имеют сплавы системы: алюминиймедь, алюминийкремний, серебромедь, свинецолово и др.

В системах такого типа не образуются фазы, представляющие собой чистые компоненты. Из жидкой фазы могут выделяться только твердые растворы и .

-твердый раствор раствор компонента В в компоненте А, т.е. А (В).

-твердый раствор раствор компонента А в компоненте В, т.е. В (А).

Следовательно, около вертикали А расположена область существования -твердого раствора на основе компонента А. Эта область АQЕА. Максимальная растворимость компонента В в компоненте А при комнатной температуре определяется отрезком АQ. Предельная же растворимость В в А в зависимости от температуры характеризуется кривой QЕА.

Около вертикали В расположена область -твердого раствора компонента А в компоненте В (ВFFВ). Растворимость компонента А в компоненте В при комнатной температуре и при температуре до точки F определяется отрезком FВ, далее она изменяется по линии FВ.

Линия АСВ является линией ликвидус, АЕСFВ линией солидус.

Зная правило фаз и правило отрезков, можно проследить за процессом кристаллизации любого сплава и определить структурный и фазовый составы во всех областях диаграммы.

Рассмотрим сплав I В точке 1 начинается процесс кристаллизации. Из жидкой фазы выделяются кристаллы -твердого раствора, состав которого изменяется по кривой а-2. Состав жидкой фазы при этом изменяется по кривой 1-в. В точке 2 кристаллизация заканчивается. Кристаллы твердого раствора имеют состав исходного жидкого сплава. Ниже точки 3, лежащей на линии предельной растворимости, твердый раствор становится пересыщенным и из него выделяются избыточные кристаллы твердого раствора . Состав твердого раствора изменяется по линии 3-Q. Состав выделяющейся -фазы определяется концентрацией F, а ее количество отрезками от линии сплава 3-4 до кривой 3-Q, отнесенными к отрезку 4-F.

Кристаллы , выделяющиеся из жидкости при первичной кристаллизации, являются первичными и записываются с индексом (I) или без него (). Кристаллы, выделяющиеся из твердого раствора, обозначаются II (-вторичные). У сплавов с концентрацией левее точки Q вторичные выделения -кристаллов отсутствуют.

Поскольку растворимость компонента А в компоненте В по линии F-F в данном случае постоянна, то вторичных выделений -кристаллов из -фазы не происходит.

Рассмотрим сплав II. В этом сплаве ниже точки 5 кристаллизуется -фаза. Состав жидкой фазы при этом изменяется по линии 5-с, а твердой -фазы по линии е-Е . В точке 6 жидкая фаза имеет эвтектический состав (точки С) и кристаллизуется с образованием эвтектики при постоянной температуре. Состав -фазы в точке 6 определяется координатой точки Е(Е),а состав -фазы координатой точки F(F).

При охлаждении сплава II ниже температуры точки 6 из -фазы (свободной и входящей в состав эвтектики) будет выделяться избыточное количество компонента В в виде II по закону предельной растворимости (линия ЕQ). При комнатной температуре состав -фазы будет соответствовать точке Q.

Свойства сплавов зависят от типа диаграммы состояния, состава и структуры сплавов. Метод построения диаграмм "составсвойство" был разработан Н.С. Курнаковым, открывшим определенную зависимость между свойствами сплавов и диаграммой состояния.

На рис. 5.6 изображены диаграммы "составсвойства" в зависимости от вида диаграмм состояния (по Н.С. Курнакову).

Рис. 5.6. Диаграммы состояния и соответствующие им диаграммы «составсвойства»

Анализ этих диаграмм позволяет сделать следующие выводы:

для повышения прочности целесообразно применять легирующие

элементы, образующие с основным металлом твердые растворы или химические соединения;

сплавы с переменной растворимостью легирующего элемента в основном металле можно упрочнять термообработкой;

в качестве литейных сплавов лучше применять сплавы, содержащие эвтектику, так как они обладают низкой температурой кристаллизации и хорошей жидкотекучестью;

однофазные сплавы имеют лучшую свариваемость и коррозионную стойкость;

двухфазные сплавы лучше обрабатываются резанием;

литейные сплавы с дендритной структурой лучше сопротив-ляются истиранию.

Задание и методические рекомендации

1. Ознакомиться с диаграммами состояния различных типов, указать в отчете значения линий и точек диаграммы, а также фазовый состав сплавов в различных областях диаграммы.

2. В точке, заданной преподавателем, определить концентрацию и относительное количество фаз графическим и расчетным методами. Оценить свойства сплава указанной концентрации и его технологические особенности.

3. Изучить и зарисовать структуру сплавов системы "свинецсурьма" различного состава, а также сплава системы NiCu заданного состава.

4. По указанию преподавателя построить кривые охлаждения для различных сплавов.

Контрольные вопросы

1. Что такое фаза, компоненты, система сплавов?

2. Как строятся диаграммы состояния и какие основные свой-ства сплавов можно выявить с их помощью?

3. Какие типы диаграмм состояния могут образовывать между собой различные компоненты? От чего зависит тот или иной тип диаграммы?

4. Как определить фазовый состав, концентрацию фаз и количественное соотношение между фазами с помощью коноды?

5. Как изменяются свойства сплавов в зависимости от их состава и типа диаграммы состояния?

Лабораторная работа № 6

Диаграмма состояния «железоцементит». Структура, свойства и применение железоуглеродистых сплавов

Цель работы

1. Рассмотреть и изучить свойства основных фаз и сложных структур в сплавах железа с углеродом.

2. Изучить диаграмму состояния "железоцементит", рассмотрев процесс кристаллизации жидкого сплава и превращения в сплавах в твердом состоянии.

3. Изучить структуры углеродистых сталей с различным содержанием углерода и различных марок чугунов. Установить связь структуры материалов с их свойствами. Определить области применения различных сталей и чугунов.

Теоретические сведения

К железоуглеродистым сплавам относят стали (содержание углерода до 2,14%) и чугуны (содержание углерода свыше 2,14%), которые по масштабу и многообразию своего применения имеют важное значение для современной техники.

Чтоб разобраться в сложных и разнообразных структурных превращениях в сплавах на основе железа и сознательно воздействовать на них путем термообработки для получения требуемых свойств, необходимо рассмотреть превращения в железоуглеродистых сплавах в условиях фазового равновесия, т.е. ознакомиться с диаграммой состояния «железоуглерод».

Компоненты и фазы в системе «железоуглерод»

Железо - металл серебристо-серого цвета, очень пластичный, с удельным весом 7,8 г/см3, температурой плавления 1539С. Оно имеет несколько аллотропических превращений (аллотропия, или полиморфизм, - способность некоторых веществ при одном и том же химическом составе изменять тип кристаллической решетки, а следовательно, иметь различные свойства), которые наглядно показаны на кривой охлаждения чистого железа (рис. 6.1).

В процессе кристаллизации из жидкой фазы при температуре 1539С образуются кристаллы -железа с объемно центрированной кубической кристаллической решеткой (ОЦК), которое обозначается Fe. При дальнейшем охлаждении -железо сохраняется до температуры 1392С, при которой происходит полиморфное превращение -железа в -железо с гранецентрированной кубической кристаллической решеткой (ГЦК), которое обозначается Fe; -железо устойчиво до температуры 911С. При температуре 911С опять происходит полиморфное превращение -железа в -железо с ОЦК кристаллической решеткой (обозначается Fe).

Рис. 6.1. Кривая охлаждения чистого железа

При температуре 768С (точка Кюри) наблюдается магнитное превращение, в результате которого образуется ферромагнитное -железо с ОЦК кристаллической решеткой, которое обозначается Fe.

Модификации железа , и обладают одной и той же ОЦК кристаллической решеткой. Следовательно, самостоятельными кристаллическими модификациями железа являются только - и -железо.

Обозначение критических точек железа. Температуры полиморфных превращений железа принято называть критическими точками и обозначать их буквой А с соответствующими индексами 2, 3, 4, указывающими на характер превращения. Чтобы отличить превращения, протекающие в железоуглеродистых сплавах при нагревании, от превращений при охлаждении принято к обозначению критических точек добавлять: при нагревании индекс с, при охлаждении индекс r. Например, точка А3 обозначает температуру аллотропического превращения FeFe.

Углерод - неметаллический элемент с удельным весом 2,265 г/см3, температурой плавления 3500С. Углерод имеет две аллотропические модификации: графита и алмаза. В форме графита в сплавах углерод встречается только в серых чугунах.

В железоуглеродистых сплавах присутствуют следующие твердые фазы:

Аустенит (А) - твердый раствор внедрения углерода в -железе.

Аустенит имеет кубическую гранецентрированную кристаллическую решетку. Растворимость углерода в Fe зависит от температуры: чем выше температура, тем больше растворимость. Максимальная растворимость углерода в Fe равна 2,14% при температуре 1147С, при температуре 727С растворимость равна 0,8%. Аустенит обладает высокой пластичностью, низкими пределами текучести и прочности. Твердость НВ составляет 170…220.

Феррит (Ф) - твердый раствор внедрения углерода в -железе. Феррит имеет кубическую объемно центрированную кристаллическую решетку. Растворимость углерода в Fe также зависит от температуры. Максимальная растворимость углерода в Fe равна 0,02% при температуре 727С, максимальная растворимость при комнатной температуре - 0,006%. Феррит (при 0,006% С) имеет следующие механические свойства в = 250 МПа,

0,2 = 120 МПа, = 50% , = 80%, НВ 80…90.

Цементит (Ц) - химическое соединение железа с углеродом Fe3C, содержащее 6,67% углерода. Он обладает сложной кристаллической решеткой, тепло- и электропроводностью, слабыми магнитными свойствами, высокой твердостью НВ 800, отличается хрупкостью. До температуры 210С цементит ферромагнитен. Температура плавления цементита - 1260С.

Различают: первичный цементит ЦI, который выделяется из жидкой фазы во всех железоуглеродистых сплавах, содержащих углерода более

2,14 %; вторичный цементит ЦII, который выделяется из аустенита в железоуглеродистых сплавах, содержащих более 0,8% углерода, в интервале температур от 1147 до 727С; третичный цементит ЦIII - выделяется из феррита в железоуглеродистых сплавах, содержащих более 0,006% углерода, в интервале температур от 727 до 0С. Если в железоуглеродистом сплаве находятся одновременно несколько разновидностей цементита, то все они являются одной фазой, т.е. химическим соединением, так как имеют один и тот же состав, строение и свойства.

Графит. Кристаллическая решетка графита гексагональная слоистая. Он мягкий, обладает низкой прочностью и электропроводностью.

В железоуглеродистых сплавах могут присутствовать следующие двухфазные структуры:

Перлит (П) - эвтектоидная механическая смесь, состоящая из двух фаз: феррита и цементита. Перлит образуется из аустенита определенного состава (0,8% С) при температуре 727С. Содержание углерода в перлите для всех железоуглеродистых сплавов всегда постоянно и составляет 0,8%. В равновесии перлит имеет пластинчатое строение (см. микроструктуру). В результате термообработки можно получить перлит зернистый, но такая структура будет неравновесной. Механические свойства перлита зависят от степени измельченности частичек цементита и формы цементита. Сталь со структурой пластинчатого перлита имеет такие свойства: в = 820 МПа, = 15%, НВ 220; сталь с зернистым перлитом в = 630 МПа, = 20%, НВ 160.

Ледебурит (Л) - эвтектическая смесь, образующаяся при постоянной температуре 1147С из жидкой фазы определенного состава (4,3% С). При температуре 1147С и до 727С ледебурит состоит из двух фаз - аустенита и цементита; ниже 727С ледебурит состоит из двух структур - перлита и цементита, т.е. также из двух фаз, но только уже из феррита и цементита. Содержание углерода в ледебурите всегда постоянно и равно 4,3%.

Диаграмма состояния «железо-цементит»

На диаграмме состояния «железо-цементит» приведены фазовый состав и структура сплавов с концентрацией углерода от 0 до 6,67% (рис. 6.2).

Область перитектического превращения в районе температуры плавления чистого железа условно не показана.

Линия АСD - линия ликвидус, линия начала кристаллизации сплавов. Выше этой линии все сплавы находятся в жидком состоянии.

Линия АECF - линия солидус, линия конца кристаллизации сплавов. Ниже этой линии все сплавы находятся в твердом состоянии.

Линии АС и DС показывают температуры начала кристаллизации аустенита (АС) и первичного цементита (DС). При выделении из жидкой фазы кристаллов аустенита состав жидкой фазы будет обогащаться углеродом и по мере снижения температуры изменяться по линии АС. Состав твердой фазы (аустенита) при этом будет обогащаться углеродом и изменяться по линии АE. При выделении из жидкой фазы кристаллов первичного цементита состав ее будет обедняться углеродом и с понижением температуры изменяться по линии DС. Состав твердой фазы (цементита) остается постоянным. Количество углерода в цементите - 6,67%.

При достижении температуры 1147С состав жидкой фазы для любого сплава, расположенного между концентрациями от точки Е (2,14% С) до точки F (6,67% С), будет соответствовать точке С (4,3% С). При этой температуре оставшаяся часть жидкой фазы данного состава кристаллизуется при постоянной температуре с образованием эвтектической механической смеси, содержащей то же количество углерода, что и жидкость, т.е. 4,3%. Эта эвтектика называется ледебуритом. Она состоит из аустенита состава точки Е (2,14% С) и цементита состава точки F (6,67% С) Ж.ФС ЛСЕ + Fe3C). Линия ЕСF обозначает постоянную температуру образования эвтектики ледебурита и температуру конца кристаллизации сплавов, содержащих углерода более 2,14%. Эта линия называется линией эвтектического превращения. Структура сплава, содержащего 4,3% углерода, будет состоять только из ледебурита. В сплавах, расположенных левее точки С, в избытке будет находиться аустенит и структура их после затвердевания будет состоять из первичных кристаллов аустенита и ледебурита; для сплавов, расположенных правее точки С в избытке будет находиться цементит, поэтому структура этих сплавов после затвердевания состоит из первичных кристаллов цементита и ледебурита.

Сплавы, расположенные левее точки Е, после окончания процесса кристаллизации (область АESG) имеют структуру аустенита.

При дальнейшем охлаждении затвердевших железоуглеродистых сплавов ниже линии АECF (линия солидус) происходят процессы, связанные с изменением растворимости углерода в железе и , а также процессы, которые обуславливаются полиморфным превращением железа.

Линия GS показывает температуру начала превращения аустенита в феррит. В сплавах, находящихся левее точки S, при понижении температуры ниже линии GS из аустенита будут выделяться кристаллы феррита.

Линия ЕS представляет собой линию изменения предельной растворимости углерода в аустените в зависимости от температуры. При охлаждении ниже этой линии происходит выделение из аустенита вторичного цементита, а при нагреве на этой линии заканчивается распад вторичного цементита и растворение углерода в аустените. Состав аустенита при понижении температуры будет все время изменяться: в сплавах, находящихся левее точки S, - обогащаться углеродом и изменяться по линии GS; в сплавах, находящихся правее точки S, - обедняться углеродом и изменяться по линии ES.

Ниже линии SECF во всех сплавах при охлаждении из аустенита будет выделяться вторичный цементит по закону линии ES.

При достижении в процессе охлаждения сплавов температуры 727С состав аустенита для всех сплавов будет соответствовать точке S (0,8% С). При этой температуре аустенит будет превращаться в эвтектоидную механическую смесь, состоящую из феррита и цементита, которая называется перлитом: АS ПSP + Fe3C).

Следовательно, линия PSK показывает постоянную температуру образования перлита (эвтектоида) при охлаждении. Линия PSK называется линией эвтектоидного, или перлитного, превращения.

Образование перлита протекает при строго определенной постоянной температуре (727С). Структура сплава, содержащего 0,8% углерода, ниже 727С будет состоять из перлита. В сплавах, расположенных левее точки S, в избытке будет находиться феррит. Структура таких сплавов состоит из феррита и перлита. Количество феррита увеличивается с уменьшением содержания углерода в сплаве. В сплавах, расположенных правее точки S, в избытке будет находиться цементит. С увеличением содержания углерода количество цементита будет расти. Структура этих сплавов будет состоять из перлита и вторичного цементита (от 0,8 до 2,14% С), при этом вторичный цементит выделяется по границам зерен в виде цементитной сетки; перлита, вторичного цементита и ледебурита (от 2,14 до 4,3% С); ледебурита (4,3% С); первичного цементита и ледебурита (от 4,3 до 6,67% С).

Линия GP показывает температуру конца превращения аустенита в феррит. При охлаждении железоуглеродистых сплавов ниже линии PSK из феррита при понижении температуры будет выделяться третичный цементит. Это связано с уменьшением растворимости углерода в -железе.

Линия PQ показывает температуру начала выделения третичного цементита из феррита. Третичный цементит может присутствовать во всех сплавах, содержащих более 0,006% С, однако как отдельная фаза он находится только в сплавах, содержащих от 0,006 до 0,02% С.

На рис. 6.2 показана диаграмма состояния системы «железоцементит» и приведен ряд сплавов с различной концентрацией углерода. Описание процессов, протекающих в сплавах при их охлаждении из жидкого состояния, приведено в табл. 6.1.

Рис. 6.2. Диаграмма состояния системы «железоцементит»

Влияние углерода на строение и свойства сталей

Сталями называются сплавы железа с углеродом, содержащие углерода до 2,14%. Углерод является важнейшим элементом, определяющим как структуру, так и свойства углеродистых сталей, ее прочность и поведение при производстве деталей и их эксплуатации.

Классификация сталей по структуре. Стальная часть диаграммы состояния «железоцементит» (до 2,14% С) соответствует структуре стали в отожженном (равновесном) состоянии, т.е. после медленного охлаждения сплавов. По структуре в равновесном состоянии стали подрезделяются:

1) на доэвтектоидные, содержащие от 0,02 до 0,8% углерода. Структура этих сталей состоит из феррита и перлита (табл. 6.1, К2);

2) эвтектоидную, содержащую 0,8% углерода. Структура этой стали состоит из перлита. Зерна перлита состоят из чередующихся пластинок феррита и цементита (табл. 6.1, К3);

3) заэвтектоидные, содержащие от 0,8 до 2,14% углерода. Структура этих сталей состоит из перлита и вторичного цементита (табл. 6.1, К4).

Сплавы железа с углеродом, содержащие углерода до 0,02%, называются техническим железом. Структура их состоит из феррита и небольшого количества третичного цементита (табл. 6.1, К1).

Таблица 6.1 Процессы и микроструктуры железоуглеродистых сплавов при охлаждении

Сплав

Процессы, происходящие при

охлаждении сплава

Конечная микроструктура

К1

С0,02%

техническое

железо,

х1000

12 Охлаждение жидкого сплава

23 Выделение из жидкого сплава кристаллов аустенита: ЖА (перитектическое превращение условно не учитывается)

34 Охлаждение аустенита

45 Превращение аустенита в

феррит: АФ

56 Охлаждение феррита

67 Выделение из феррита третичного цементита: Ф+ЦIII

Сплав

Процессы, происходящие при

охлаждении сплава

Конечная микроструктура

К3

С=0,8%

эвтектоидная

сталь,

х500

12 Охлаждение жидкого сплава

23 Кристаллизация жидкого сплава с образованием аустенита: ЖА

34 Охлаждение аустенита

4 Эвтектоидное превращение:

А0,8% С П0,8% С 0,02% С + Ц6,67% С)

45 Выделение из феррита третичного цементита: Ф+ЦIII

К4

С=0,8…2,14%

заэвтектоидная

сталь,

х500

12 Охлаждение жидкого сплава

23 Кристаллизация жидкого сплава с образованием аустенита: ЖА

34 Охлаждение аустенита

45 Выделение из аустенита кристаллов вторичного цементита: А+ЦII

5 Эвтектоидное превращение:

А0,8% С П0,8% С 0,02% С + Ц6,67% С)

56 Выделение из феррита третичного цементита: Ф+ЦIII

Классификация сталей по содержанию углерода. Чем больше углерода в стали (до 0,9% С), тем выше твердость, прочность, но ниже пластичность. По содержанию углерода стали подразделяют:

1) на низкоуглеродистые стали с содержанием углерода до 0,2%(08кп, 10, 15, 20). Они обладают высокой пластичностью и используются для деталей сложной формы, штампуемых из листа, а также для сварных конструкций. Стали марок 10, 15, 20 применяют для изготовления цементуемых деталей;

2) среднеуглеродистые стали с содержанием углерода от 0,2 до 0,65%. Их используют в термообработанном состоянии для изготовления осей, валов, плунжеров, муфт, бандажей и других аналогичных деталей.

Стали марок 55, 60 с содержанием углерода 0,5...0,6% применяют для изготовления пружин и пружинных деталей (закалка и средний отпуск);

3) высокоуглеродистые стали с содержанием углерода 0,7% и более (У7, У8, У10, У12) термически обрабатывают на высокую прочность и твердость (закалка и низкий отпуск) и применяют для мерительного и режущего инструментов.

Структура, свойства и применение чугунов

Сплавы железа с углеродом с содержанием углерода более 2,14% называются чугунами.

В зависимости от условий кристаллизации и последующей обработки углерод в чугунах может находиться в виде цементита либо в виде графита. В соответствии с этим различают две группы чугунов белые и серые.

Белые чугуны по структуре могут состоять из перлита и ледебурита (доэвтектические чугуны с содержанием углерода до 4,3%), ледебурита (эвтектический белый чугун) и ледебурита и цементита (заэвтектические белые чугуны, содержащие более 4,3% С).

Из-за присутствия в белых чугунах большого количества цементита они тверды и хрупки и для изготовления деталей машин практически не используются. Иногда на некоторых участках чугунных деталей (коренные шейки коленчатых валов, прокатные валки и т.д.) специально получают отбеленный поверхностный слой в целях повышения твердости и износостойкости.

Серые чугуны содержат большую часть углерода в виде графита. По форме графитовых включений они подразделяются на серые, ковкие и высокопрочные. Наличие графита в свободном состоянии приводит к уменьшению прочности, коэффициента трения и амплитуды резонансных колебаний (при этом гасится вибрация).

Серый чугун маркируется буквами: С серый, Ч чугун, например: СЧ10, СЧ15, СЧ18. Цифры обозначают предел прочности чугуна в кгс/мм2. В сером чугуне ледебурит отсутствует, а углерод частично или полностью находится в виде пластинчатого графита (рис. 6.3).

Рис. 6.3. Серый чугун с пластинчатым графитом: перлитоферритографитная микроструктура, х200

Основная металлическая матрица серого чугуна может состоять из феррита, смеси феррита и перлита или перлита. Соответственно этому подобные чугуны часто называются ферритными, ферритно-перлитными и перлитными. Серые Ф-П чугуны используют для изготовления деталей, испытывающих средние динамические нагрузки (блоки цилиндров двигателей, головки цилиндров, корпуса гидронасосов и др.) и работающих в условиях трения (гильзы цилиндров, барабаны сцепления и др.).

Перлитные серые чугуны применяют для изготовления деталей, работающих при достаточно высоких динамических нагрузках и в условиях трения (шестерни, звездочки, храповики, шпиндели, поршневые кольца и др.).

Ковкий чугун отличается тем, что углерод в нем находится в свободном состоянии в форме хлопьевидного графита (рис. 6.4).

Рис. 6.4. Ковкий чугун с хлопьевидным графитом: ферритографитная микроструктура, х250

Ковкие чугуны получают путем специального отжига белого чугуна. В зависимости от режима отжига основная металлическая матрица может быть ферритной, ферритно-перлитной и перлитной. Образующиеся участки графита имеют вид крупных пятнистых включений неправильной формы с глубоко изрезанными границами.

Ковкий чугун маркируется буквами: К ковкий, Ч чугун, например: КЧ 306, КЧ 3510. Первая цифра обозначает предел прочности чугуна в кгс/мм2, вторая относительное удлинение в %. Ферритно-перлитные и перлитные ковкие чугуны применяют для изготовления деталей, работающих при высоких статических и динамических нагрузках и в тяжелых условиях износа (муфты, звездочки и звенья приводных цепей, тормозные колодки, коленчатые валы, лопасти центробежных дробеметных барабанов и др.).

Высокопрочный чугун характеризуется тем, что углерод в нем в значительной степени или полностью находится в свободном состоянии в форме шаровидного графита (рис. 6.5).

Такие чугуны получают путем добавки в жидкий чугун перед разливкой небольших количеств определенных элементов (Mg, Zr, Ge и др.), которые изменяют условия кристаллизации. Графит имеет почти правильную шаровидную форму с четко очерченными границами.

Рис. 6.5. Высокопрочный чугун с шаровидным графитом: перлитоферритографитная микроструктура, х200

Основная структура обычно представляет собой перлит. Иногда вокруг графита наблюдается оболочка феррита.

Высокопрочный чугун маркируется буквами: В высокопрочный, Ч чугун, например: ВЧ 35, ВЧ 70. Цифра обозначает предел прочности чугуна в кгс/мм2. Высокопрочные чугуны применяют для изготовления ответственных деталей, испытывающих знакопеременные динамические нагрузки (коленчатые валы двигателей, кронштейны, шестерни, тормозные диски, прокатные валки и др.).

Задание и методические рекомендации

1. Изучить диаграмму состояния «железоцементит», на ее графическом изображении обозначить области существования соответствующих структур и фазовый состав сплавов.

2. Указать значения линий и точек диаграммы.

3. Дать определение и характеристику свойств основных фаз и двухфазных структур железоуглеродистых сплавов.

4. Для заданного сплава построить кривую охлаждения и указать, какие превращения происходят при охлаждении.

5. Изучить под микроскопом или на компьютере микроструктуру сталей с различным содержанием углерода. Зарисовать микроструктуру. В соответствии с диаграммой определить основные структурные составляющие и обозначить их на рисунках. Пользуясь справочными таблицами, указать основные механические характеристики сталей и их применение.

6. По структуре отоженной стали определить процентное содержание углерода. Например, в доэвтектоидной стали содержится 20% перлита и, следовательно, 80% феррита (определяем на глаз под микроскопом или по микрофотографии). При приближенном расчете, не учитывая содержания углерода в феррите, считают, что весь углерод находится только в перлите. В этом случае количество углерода в стали определяется так:

100% перлита содержат 0,8% С, 20% перлита содержит х1 % С.

Тогда х1= = 0,16% С.

При более точном определении содержание углерода в стали, особенно в малоуглеродистой, необходимо учитывать углерод, содержащийся в феррите и в третичном цементите, который определяется следующим образом: 100% феррита содержат 0,025% С (при 727С),

80% феррита содержат х2% С. Тогда

х2= = 0,02% С.

Содержание углерода в стали равно сумме: х12.

Если сталь заэвтектоидная и ее структура содержит 95% перлита и 5% вторичного цементита, содержание углерода в стали определяется так:

1) 100% перлита содержат 0,8% С, 95% перлита содержат х1 % С.

Тогда х1= = 0,76 % С;

2) 100% цементита содержат 6,67% С, 5% цементита содержат х2% С. Тогда х2== 0,33% С.

Содержание углерода в стали равно х12.
7. Рассмотреть классификацию и способы производства различных чугунов. Изучить под микроскопом или на компьютере структуру различных марок чугунов, зарисовать ее в таблице с обозначением основных фаз и структур. Указать основные механические характеристики и применение различных чугунов.
Контрольные вопросы
1. Какие фазы и сложные структуры образуются в железоуглеродистых сплавах?
2. Как называются линии, точки и отдельные области диаграммы "железоцементит"?
3. Как изменяется структура сталей в равновесном состоянии по мере увеличения содержания в ней углерода? Как классифицируются стали по структуре?
4. Как классифицируются стали по содержанию в них углерода?
Как они маркируются?
5. Как изменяются свойства сталей в зависимости от их структуры и содержания углерода? Указать области применения сталей с различным содержанием углерода.
6. Как изменяются свойства чугуна в зависимости от их структуры? Указать области применения серых, ковких и высокопрочных чугунов.
Лабораторная работа № 7
Термическая обработка углеродистых сталей
Цель работы
1. Ознакомиться с различными видами термической обработки углеродистых сталей и их назначением.
2. Разобраться в сущности упрочняющей термической обработ-ки сталей (закалка и отпуск). Научиться правильно выбирать ре-жимы нагрева сталей под закалку по диаграмме состояния "железоцементит".
3. Изучить способы и технологию закалки сталей, их преимущества и недостатки.
4. Экспериментально определить влияние на закаливаемость сталей: а) их состава (содержания углерода); б) скорости непрерывного охлаждения из аустенитной области.
5. Экспериментально исследовать влияние отпуска при различной температуре на структуру и свойства закаленной стали.
6. Изучить с помощью металлографического микроскопа микроструктуру сталей после различных видов термической обработки.
Содержание работы
Теория термической обработки сталей базируется на четырех основных превращениях:
1) превращение перлита в аустенит при нагреве выше точек А1 или А3;
2) превращение аустенита в перлит при охлаждении ниже точек А1, А3 (изотермический распад аустенита и распад аустенита при непрерывном охлаждении);
3) превращение аустенита в мартенсит при закалке сталей;
4) превращения мартенсита и остаточного аустенита при нагреве (отпуск сталей).
Для полного или частичного перевода сталей в структурно-равновесное состояние применяют различные виды отжига.
Отжигом называют такой вид термической обработки, при котором сталь нагревают ниже или выше температуры критических точек, выдерживают при этой температуре и затем медленно охлаждают.
Отжиг I рода проводят при температурах выше или ниже температур фазовых превращений. К отжигу I рода относятся диффузионный отжиг (гомогенизация), рекристаллизационный отжиг и отжиг для снятия внутренних напряжений. Этот вид термообработки в зависимости от температурных условий его выполнения устраняет химическую или структурную неоднородность, созданную предшествующими обработками.
Отжиг II рода заключается в нагреве стали до температур выше точек А1 или А3, выдержке и, как правило, последующем медленном охлаждении (вместе с печью). При этом виде отжига протекают фазовые превращения, определяющие структуру и свойства стали. Для сталей проводят следующие виды отжига: полный отжиг с температурой нагрева доэвтектоидных сталей выше температуры А3 и заэвтектоидных сталей выше температуры А1 и неполный отжиг, когда температура выше А1, но ниже А3. Структура сталей после отжига: перлит + феррит, перлит или перлит + цементит. Отжиг II рода применяют для получения равновесной структуры в целях снижения твердости, повышения пластичности и вязкости стали; улучшения обрабатываемости; измельчения зерна.
Нормализация (рис. 7.3, режим V4) заключается в нагреве доэвтектоидной стали до температуры, превышающей точку А3 на 40…50С, заэвтектоидной стали до температуры выше критических точек Аст также на 40…50С, в непродолжительной выдержке для завершения фазовых превращений и охлаждении на воздухе. Углеродистые стали после нормализации несколько прочнее, чем после отжига. Их пластичность при этом ниже максимально возможной. Так как при производстве полуфабрикатов (прутков, уголков, швеллеров, листов, полос и др.) методами горячей обработки давлением после деформации их охлаждение происходит на воздухе, то структура и свойства таких полуфабрикатов соответствуют нормализованному состоянию, что обычно указывается в справочниках.
Настоящая работа посвящена упрочняющим видам термической обработки углеродистых сталей закалке и отпуску.
Закалка это термическая операция, состоящая из нагрева стали до температуры аустенитного состояния, выдержки при этой температуре с последующим охлаждением со скоростью больше критической в целях получения структурно-неустойчивого состояния. В результате закалки аустенит превращается в мартенсит.

Подобные документы

  • Применение деформируемых алюминиевых сплавов в народном хозяйстве. Классификация деформируемых алюминиевых сплавов. Свойства деформируемых алюминиевых сплавов. Технология производства деформируемых алюминиевых сплавов.

    курсовая работа [62,1 K], добавлен 05.02.2007

  • Формирование структуры и методы исследования свойств металлов; диаграмма состояния "железо-цементит". Железоуглеродистые сплавы; термическая обработка металлов и сплавов. Сплавы, применяемые в промышленности; выбор сплава на основе цветного металла.

    контрольная работа [780,1 K], добавлен 13.01.2010

  • Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.

    презентация [40,6 K], добавлен 29.09.2013

  • Физико-химические закономерности формирования; строение и свойства материалов. Типы кристаллических решёток металлов. Испытания на ударный изгиб. Термическая и химико-термическая обработка, контроль качества металлов и сплавов. Конструкционные материалы.

    курсовая работа [3,7 M], добавлен 03.02.2012

  • Характеристика основных механических свойств металлов. Испытания на растяжение, характеристики пластичности (относительное удлинение и сужение). Методы определения твердости по Бринеллю, Роквеллу, Виккерсу; ударной вязкости металлических материалов.

    реферат [665,7 K], добавлен 09.06.2012

  • Свойства металлов и сплавов. Двойные сплавы. Металлы применяемые в полиграфии. Технические требования к типографским сплавам. Важнейшие свойства типографских сплавов. Металлы для изготовления типографских сплавов. Диаграммы состояния компонентов.

    реферат [32,5 K], добавлен 03.11.2008

  • Обзор состава простых конструкционных сталей. Получение чугуна и легированных сталей. Характерные особенности медно-никелевых сплавов. Применение алюминиевых бронз, нейзильбера, мельхиора в народном хозяйстве. Механические свойства сплавов меди с цинком.

    презентация [3,3 M], добавлен 06.04.2014

  • Титановые сплавы - материалы, плохо поддающиеся обработке резанием. Общие сведения о существующих титановых сплавах. Уровни механических свойств. Выбор инструментальных материалов для токарной обработки титановых сплавов. Нанесение износостойких покрытий.

    автореферат [1,3 M], добавлен 27.06.2013

  • Классификация металлов: технические, редкие. Физико-химические свойства: магнитные, редкоземельные, благородные и др. Свойства конструкционных материалов. Строение и свойства сталей, сплавов. Классификация конструкционных сталей. Углеродистые стали.

    реферат [24,1 K], добавлен 19.11.2007

  • Рассмотрение основных факторов, влияющих на технологические свойства титана и его сплавов. Определение свойств титановых сплавов. Оценка свойств материала для добычи нефти и газа на шельфе. Изучение практики использования в нефтегазовой промышленности.

    реферат [146,1 K], добавлен 02.04.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.