Металлы и сплавы

Определение механических свойств конструкционных материалов путем испытания их на растяжение. Методы исследования качества, структуры и свойств металлов и сплавов, определение их твердости. Термическая обработка деформируемых алюминиевых сплавов.

Рубрика Производство и технологии
Вид учебное пособие
Язык русский
Дата добавления 29.01.2011
Размер файла 7,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В пересыщенном и неустойчивом твердом растворе, полученном при закалке, происходят изменения, приводящие к дальнейшему упрочнению сплава. Процессы эти называются старением.

Если старение протекает при комнатной температуре, то его называют естественным старением, если же при повышенных температурах искусственным старением. Старение может быть зонным и фазовым. Наиболее типичным явлением в закаленных сплавах является фазовое старение, когда при повышенных температурах (только искусственное старение!) из пересыщенного твердого раствора выделяются мелкодисперсные упрочняющие интерметаллидные фазы (например, фаза MgZn2 в высокопрочных алюминиевых сплавах типа В95).

В дуралюминах имеет место зонное старение, и упрочнение не связано с распадом твердого раствора. Рентгеноструктурный и металлографический анализ показывает, что при старении, когда сплав достигает максимальной прочности, избыточные интерметаллидные фазы в сплаве отсутствуют.

Упрочнение связано с диффузией меди в закаленном сплаве и образованием внутри кристаллов зон повышенной концентрации меди, так называемых зон ГиньеПрестона (ЗГП). Зоны ГиньеПрестона представляют собой тонкие пластинчатые дискообразные области толщиной в несколько атомных слоев (5...10 Е) и протяженностью в несколько десятков атомных слоев (40...100 Е). Содержание меди в зонах ГП повышено, но оно не отвечает формуле СuА12. Образование зон ГиньеПрестона создает большие напряжения в кристаллах и дробит блоки мозаики, что приводит к повышению твердости и прочности.

При естественном старении (20°С) прочность становится максимальной через четыре-пять суток после закалки, причем скорость упрочнения в первые часы значительно меньше, чем в последующие, но затем интенсивность упрочнения убывает. Начальный период, характеризуемый отсутствием или очень слабым повышением прочности, называется инкубационным. В это время (23 часа) сплав обладает большой способностью к пластической деформации и закаленные детали можно подвергать гибке, отбортовке, расклепке заклепок и т.д. Инкубационный период можно продлить, сохраняя закаленные детали при низких температурах. На рис. 10.4 показана микроструктура естественно состаренного дуралюмина Д1. На рисунке кроме -твердого раствора видны темные включения марганцовистой и железосодержащих фаз.

Рис. 10.4. Микроструктура закаленного и естественно состаренного дуралюмина Д1, х150

Естественно состаренное состояние сплава является неустойчивым. Если недолго выдержать подвергнутый естественному старе-нию алюминиевый сплав при температуре 200...250С, то он разупрочнится и приобретет свойства, характерные для свежезакаленного состояния. Сплав вновь приобретает способность к естественному старению. Это явление (т.е. возвращение к свежезакаленному состоянию после кратковременного нагрева) называется обработкой на возврат, или возвратом.

Скорость старения сильно зависит от температуры. При искусственном старении сначала довольно быстро наблюдается упрочнение, а затем начинается разупрочнение сплава и в конечном итоге сплав стремится перейти в равновесное состояние ( -тведый раствор + -фаза). Кроме этого, максимальная твердость и прочность, как правило, бывают тем ниже, чем выше температура старения. Поэтому искусственное старение надо своевременно остановить, не допуская перестаривания. Актуальной является задача определения оптимальных параметров процесса искусственного старения.

Искусственное старение протекает в несколько стадий. Первая стадия такая же, как и при естественном старении. Образующиеся при этом первые маленькие зоны ГиньеПрестона принято называть ЗГП-1. Вторая стадия заключается в увеличении зон ГП (толщина их 10...40 Е, диаметр 200...300 Е). Эти зоны называют ЗГП-2. Содержание меди в зонах ГП-2 достигает стехиометрического соотношения, соответствующего химической формуле -фазы СuАl2. Принципиальной разницы между ЗГП-1 и ЗГП-2 нет. Образование ЗГП-2 сопровождается дальнейшим увеличением твердости и прочности сплава.

Дальнейшее повышение температуры или увеличение выдержки при повышенных температурах (например при 100°С) приводит к преобразованию ЗГП-2 в фазу, обозначаемую через . По составу эта фаза такая же, как и , но она еще не обособилась и ее кристаллическая решетка когерентно связана с кристаллической решеткой -твердого раствора. Это третья стадия процесса искусственного старения. На этой стадии еще возможно частичное упрочнение сплава, но может начаться и процесс разупрочнения.

Четвертая стадия наступает тогда, когда -фаза превра-щается в стабильную -фазу и начинается ее коагуляция. На этой стадии и далее наблюдается разупрочнение сплава. Структура его стремится к равновесной, твердость и прочность снижаются до соответствующих характеристик отожженного сплава.

Процесс искусственного старения дуралюминов обычно прекращается при достижении в сплаве максимальных характеристик твердости и прочности.

При фазовом старении, которое, как правило, является искусственным, перестаривание связано с укрупнением интерметаллидных вторичных фаз и их коагуляцией. Поэтому режимы старения для таких сплавов должны быть также оптимальными.

Задание и методические рекомендации

1. Начертить часть диаграммы AlCu, указать на ней сплав Д1 (Аl + 3,8... 4,8% Сu + 0,4... 0,8% Мg + 0,4...0,8% Мn). Выбрать для него температуру нагрева под закалку. Показать на диаграмме состояния интервал закалочных температур для других сплавов.

2. Провести закалку образцов из заданного сплава (Д1, Д16 или другого термически упрочняемого сплава). Замерить твердость ( НRВ ) образцов после закалки, оценить влияние закалки на свойства.

3. Экспериментально исследовать процесс естественного старения, для чего через каждые 15 мин измерять твердость закаленного образца (во время занятий), а затем провести измерение твердости через 3, 7 (желательно) и через 14 суток (на следующем занятии).

4. Экспериментально исследовать процесс искусственного старения в течение различного времени при постоянной температуре (120 или 150°С). Для этого закаленные образцы с примерно одинаковой твердостью в количестве 4 шт. поместить в печь с заданной температурой, затем извлекать по одному образцу через 5, 15, 30, 45 мин и измерять твердость. Данные занести в таблицу, построить график зависимости твердости от времени старения. Определить оптимальное время старения при заданной температуре.

5. Экспериментально исследовать процесс искусственного старения в течение постоянного времени (30 мин) при различных температурах. Для этого закаленные образцы поместить в печи с разной температурой (по одному образцу в каждую печь). Значения температуры старения занести в таблицу. Через 30 мин образцы извлечь из печей, охладить (можно в воде) и замерить твердость. Данные занести в таблицу. Построить график зависимости твердости от температуры старения (при постоянном времени старения). Определить оптимальную температуру старения.

6. Выявить, с помощью оптического микроскопа изучить и зарисовать в таблицу по предлагаемой форме структуру типичных алюминиевых сплавов в различном состоянии (не менее 56 микрошлифов), указать на зарисовках фазовый состав сплавов, а в последней графе таблицы отразить (используя учебники, справочники, плакаты и другие источники) свойства и применение этих сплавов в соответствующем состоянии.

Контрольные вопросы

1. Как классифицируются алюминиевые сплавы? На чем основана возможность термического упрочнения ряда сплавов?

2. Какова структура термически упрочняемых сплавов в равновесном состоянии? Как изменяется структура и свойства сплавов в процессе нагрева, закалки, естественного и искусственного старения?

3. Охарактеризуйте особенности зонного и фазового старения.

4. Что происходит в закаленных дуралюминах при естественном старении, как изменяются при этом свойства сплавов? Что представляет собой обработка на возврат?

5. Охарактеризуйте стадии искусственного старения дуралюмина. Почему на определенной стадии искусственного старения наблюдается перестаривание?

Библиографический список

1. Конструкционное материаловедение/ Борисевич В.К., Виноградский А.Ф., Карпов Я.С., Самойлов В.Я., Семишов Н.И.: В 2 кн. Х.: Нац. аэрокосм. ун-т им. Н.Е. Жуковского «ХАИ», 2001. Кн. 1. Металлы и сплавы. 456 с.

2. Лахтин Ю.М., Леонтьева В.П. Материаловедение. М.: Машиностроение, 1990. 528 с.

3. Гуляев А.П. Металловедение. М.: Металлургия, 1977. 647 с.

4. Борисевич В.К., Виноградский А.Ф., Семишов Н.И. Конструкционное материаловедение. Х.: Харьк. авиац. ин-т, 1998. 404 с.

5.Лахтин Ю.М. Металловедение и термическая обработка металлов. М.: Металлургия, 1977. 407 с.

6. Мозберг Р.К. Материаловедение. Таллин: Валгус, 1976. 554 с.

7. Глазунов С.Г., Моисеев В.Н. Конструкционные титановые сплавы. М.: Металлургия, 1984. 367 с.

8. Сазоненко Н.Д., Горбань В.П., Каныгин С.Л. Свойства и применение нержавеющих, жаростойких и жаропрочных сталей и сплавов в авиадвигателестроении: Учеб. пособие. Х.: Харьк. авиац. ин-т, 1994. 30 с.

9. Свойства и применение сплавов алюминия, магния, бериллия в авиастроении: Учеб. пособие/ Горбань В.П., Рева Л.С., Сазоненко Н.Д., Кириченко Л.Р., Каныгин С.Л. Х. :Харьк. авиац. ин-т, 1994. 62 с.


Подобные документы

  • Применение деформируемых алюминиевых сплавов в народном хозяйстве. Классификация деформируемых алюминиевых сплавов. Свойства деформируемых алюминиевых сплавов. Технология производства деформируемых алюминиевых сплавов.

    курсовая работа [62,1 K], добавлен 05.02.2007

  • Формирование структуры и методы исследования свойств металлов; диаграмма состояния "железо-цементит". Железоуглеродистые сплавы; термическая обработка металлов и сплавов. Сплавы, применяемые в промышленности; выбор сплава на основе цветного металла.

    контрольная работа [780,1 K], добавлен 13.01.2010

  • Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.

    презентация [40,6 K], добавлен 29.09.2013

  • Физико-химические закономерности формирования; строение и свойства материалов. Типы кристаллических решёток металлов. Испытания на ударный изгиб. Термическая и химико-термическая обработка, контроль качества металлов и сплавов. Конструкционные материалы.

    курсовая работа [3,7 M], добавлен 03.02.2012

  • Характеристика основных механических свойств металлов. Испытания на растяжение, характеристики пластичности (относительное удлинение и сужение). Методы определения твердости по Бринеллю, Роквеллу, Виккерсу; ударной вязкости металлических материалов.

    реферат [665,7 K], добавлен 09.06.2012

  • Свойства металлов и сплавов. Двойные сплавы. Металлы применяемые в полиграфии. Технические требования к типографским сплавам. Важнейшие свойства типографских сплавов. Металлы для изготовления типографских сплавов. Диаграммы состояния компонентов.

    реферат [32,5 K], добавлен 03.11.2008

  • Обзор состава простых конструкционных сталей. Получение чугуна и легированных сталей. Характерные особенности медно-никелевых сплавов. Применение алюминиевых бронз, нейзильбера, мельхиора в народном хозяйстве. Механические свойства сплавов меди с цинком.

    презентация [3,3 M], добавлен 06.04.2014

  • Титановые сплавы - материалы, плохо поддающиеся обработке резанием. Общие сведения о существующих титановых сплавах. Уровни механических свойств. Выбор инструментальных материалов для токарной обработки титановых сплавов. Нанесение износостойких покрытий.

    автореферат [1,3 M], добавлен 27.06.2013

  • Классификация металлов: технические, редкие. Физико-химические свойства: магнитные, редкоземельные, благородные и др. Свойства конструкционных материалов. Строение и свойства сталей, сплавов. Классификация конструкционных сталей. Углеродистые стали.

    реферат [24,1 K], добавлен 19.11.2007

  • Рассмотрение основных факторов, влияющих на технологические свойства титана и его сплавов. Определение свойств титановых сплавов. Оценка свойств материала для добычи нефти и газа на шельфе. Изучение практики использования в нефтегазовой промышленности.

    реферат [146,1 K], добавлен 02.04.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.