Технологический процесс изготовления корпуса расточной оправки
Технологический процесс изготовления детали "Корпус". Расчет припусков на механическую обработку. Нормирование технологического процесса. Станочные и контрольные приспособления. Исследование автоколебаний технологической системы на операции шлифования.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 17.10.2010 |
Размер файла | 780,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
, (9.11)
где Р - избыточное давление воздуха, принимаемое в расчетах равным 0,4 МПа.
В конструкции станка 16К20Ф3 можно встроить силовой привод с диаметром поршня не более 120 мм, Если при расчете по вше указанной формуле диаметр поршня получится более 120мм, то следует применять гидравлический привод, где за счет регулирования давления масла можно получить большие исходные усилия. При заданном усилии Q подбираем давление масла (Рг = 1,0; 2,5; 5,0; 7,5 МПа), чтобы диаметр поршня не превышал 120мм.
- для пневмопривода.
Следовательно, в качестве привода, для данного патрона, принимаем пневмоцилиндр стандартного диаметра D = 100 мм.
Ход поршня цилиндра рассчитывается по формуле:
SQ = SW / iп, , (9.12)
SQ = 5 / 2=2,5.
где SW - свободный ход кулачков, который можно принять равным 5 мм;
iп = 1/iК - передаточное отношение зажимного механизма по перемещению. Значение SQ принимать с запасом 10…15 мм.
Принимаем пневматический цилиндр с D = 100 мм, а SQ = 20 мм.
9.6 Расчет погрешности установки заготовки в приспособлении
Данный раздел выполняется после разработки конструкции патрона и простановки размеров. Погрешность установки определяется по формуле:
,
где еб - погрешность базирования, равная при данной схеме нулю, так как измерительная база используется в качестве технологической.
ез - погрешность закрепления - это смещение измерительной базы под действием сил зажима ().
епр - погрешность элементов приспособления, зависящая от точности их изготовления.
,
где щАД - колебания замыкающего размера АД.
Д1 - погрешности из-за колебания зазоров в сопряжении центра вставленного в гнездо крышки (Д1 = Sнб- Sнм).
Таким образом:
;
.
Погрешность установки не должна превышать величин:
для черновой обработки - еудоп = zminшл (zminшл - минимальный припуск на шлифование); еудоп = 0,05 мм.
еудоп = 0,05 мм > еу = 0,034 мм, следовательно, патрон разработан, верно, и может использоваться на 15-й токарной (чистовой) операции.
9.7 Описание работы трехкулачкового самоцентрирующего патрона
Патрон работает следующим образом: заготовка устанавливается левым торцевым отверстием на плавающий центр и поджимается жестким задним вращающимся центром до упора с торцевыми кулачками. Масло под действием давления создаваемого насосом подаётся через систему каналов в муфте в левую полость гидроцилиндра. Под действием гидравлического усилия поршень вместе со штоком в виде клина перемещается вправо и выдвигает постоянные кулачки в виде рычагов из корпуса патрона. При дальнейшем движении эти кулачки зажимают заготовку по наружной цилиндрической поверхности. Сочетание двух зажимов позволяет вести обработку на максимальных режимах резания. Как только заготовка зажата, шпиндель станка получает вращение от двигателя посредствам зубчатых передач, представляющих часть кинематической схемы станка. Шпиндель соединен с гидроцилиндром силового привода, а так же с корпусом патрона, в который вставлены постоянные кулачки. Патрон вместе с закреплённой в нём заготовкой получает вращение. После обработки большей части контура вала без остановки патрона включается силовой привод и перемещая центровик влево, осуществляется разжим заготовки радиальными кулачками и их перемещение в корпус патрона, появляется возможность обработки конца вала который был под кулачками. Обработка ведется на пониженных режимах резания. После окончания обработки, когда шпиндель отключен от главного движения, отжимается задний центр и заготовка снимается.
Сборочный чертёж поводкового патрона представлен в графической части лист 06.М15.660.50.00.СБ.
10. ПРОЕКТИРОВАНИЕ КОНТРОЛЬНОГО ПРИСПОСОБЛЕНИЯ
Задача раздела спроектировать контрольное приспособление, позволяющее контролировать углы в любом месте на поверхности инструмента, а также нецентричность поперечной кромки всех деталей из данной группы сверл, способом светового сечения.
10.1 Оценка точности приспособления
На рисунке 10.1 изображены контролируемые величины.
Рис. 10.1. Контролируемая величина
Точность контролируемых величин зависит от точности применяемого микроскопа. В данном случае применяется микроскоп ММИ-2 по ГОСТ 5405-54 с ценой деления 0,005 мм для линейных размеров и 1 мин для угловых размеров, с оптическим увеличением в 10раз.
Предельная погрешность измерения рассчитывается по следующей формуле:
. (9.1)
В нашем случае допуск на угловые размеры составляем 10' следовательно, погрешность измерения не окажет существенного влияния на контролируемый размер. Поэтому применяем метод контроля световым сечением с применением микроскопа.
9.2 Описание контрольного приспособления
Приспособление предназначено для контроля углов в любом месте на поверхности инструмента, а также нецентричность поперечной кромки всех деталей из данной группы сверл, способом светового сечения.
Приспособление содержит плиту базовую 1, угольник 2, призму опорную 3, отражательную призму 4, излучатель световых волн 5, тубус микроскопа 6, специальную опору 7, зеркало 9 и стандартные изделия (винты, шпонки, гайки).
Приспособление работает следующим образом: деталь (сверло) устанавливается на две опорные призмы, которые крепятся к базовой плите 1, при этом лапка сверла входит в отверстие специальной опоры 7, крепящейся к угольнику 2 и поджимается винтом 13 . Отражательная призма 4 с зеркалом 9 пододвигается под режущую часть сверла и под тубус микроскопа 6. Для контроля угла наклона поперечной кромки включается левый излучатель световых волн 5, и исследуемый объект освещается плоским пучком света. Свет отражается от опоры в тубус микроскопа, при этом в нем видна неотраженная часть (сечение) сверла. Для контроля нецентричности поперечной кромки включается правый излучатель световых волн 5, и исследуемый объект освещается плоским пучком света. Свет отражается от опоры в тубус микроскопа, при этом в нем видна неотраженная часть (сечение) сверла. Для контроля главного угла в плане необходимо убрать из под сверла отражательную призму и не подавать пучков света, при этом в микроскоп виден контур сверла. Измерение окончено.
Сборочный чертёж контрольного приспособления представлен в графической части лист 06.М15.660.60.00СБ
11. ПРОЕКТИРОВАНИЕ РЕЖУЩЕГО ИНСТРУМЕНТА
Задача раздела выбрать материал, спроектировать геометрию режущего инструмента и применить его на операции 40 - шлифование стружечных канавок.
11.1 Исходные данные:
Вид обработки - шлифование (предварительное);
Оборудование - специальный шлифовальный NU535CNC.
11.2 Выбор материала и проектирование геометрии режущего инструмента
Геометрия режущего инструмента зависит от формы стружечной канавки. Размеры круга определяются с учетом размеров детали из данной группы, и они приведены на листе 06.М15.660.70.14. Правка круга осуществляется алмазным карандашом при следующих режимах: VК = 1 - 3 м/с, SПР = 1 - 2 м/мин, SПОП = 0,02 - 0,04 мм/дв.ход.
Материал режущего инструмента выбираем исходя из вида и твердости обрабатываемого материала. Согласно рекомендациям [4] выбираем материал 24А12НСТ26Б.
Абразивный материал - 24А - белый электрокорунд;
Зернистость - 12 мкм;
Степень твердости - СТ2- средне твердый;
Вид связки - Б1 - бакелитовая (карбида бора 50%).
12. ИССЛЕДОВАНИЕ В ОБЛАСТИ ПОВЫШЕНИЯ ИЗНОСОСТОЙКОСТИ РЕЖУЩЕЙ ЧАСТИ СВЕРЛА ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ МЕТОДОМ ИОННОЙ ИМПЛАНТАЦИИ
12.1 Описание ситуации
При обработке деталей резанием с применением лезвийного инструмента из инструментальной быстрорежущей стали, происходит его интенсивный износ в связи с различными факторами, такими как: высокие температуры в зоне резания, вызванные большим трением в контакте заготовка - инструмент; повышение вибрации в процессе обработки, вызванные динамикой станка; огромные давления на инструмент (усилия деформации); физико-механические свойства обрабатываемого и обрабатывающего материала; геометрические параметры режущего инструмента; элементы режимов резания; свойства применяемых смазывающе-охлаждающих технологических смесей (СОТС); электрические явления, возникающие в контакте режущий инструмент - заготовка; схема резания и др. Так же это ведет к увеличению вспомогательного времени, затрачиваемого на под наладку технологической системы и смену инструмента.
Административное противоречие - износостойкость лезвийных инструментов при обработке металлов резанием недостаточно высока и не соответствует постоянно ускоряющемуся темпу развития высокоскоростных станков, а так же совершенствованию конструкционных жаропрочных сталей.
Повысить износостойкость лезвийного инструмента на основе инструментальной быстрорежущей стали можно за счет применения технических решений, снижающих воздействие вышеперечисленных факторов.
12.2 Анализ ситуации
При обработке резанием в связи с вышеперечисленными факторами происходит диффузионное, адгезионное, химическое и другие виды изнашивания РИ. Считаем, что в данной ситуации при данном методе обработки детали выбраны оптимальные режимы резания, применяются прогрессивные виды СОТС, применена оптимальная схема резания, которая позволяет свести к минимуму давление на инструмент, выбран правильно заточной инструмент (геометрия инструмента), выбран точный станок с относительно жесткой системой станок - приспособление - инструмент - деталь (СПИД), что позволяет свести к минимуму вибрации в процессе резания.
13. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА
Задача раздела - дать краткое описание разрабатываемого технологического процесса, описание рабочих мест, оборудования и выполняемых операций. Выявить опасные вредные производственные факторы (ОВПФ) действующие на человека, антропогенные воздействия на окружающую среду и предложить меры по защите человека от действия ОВПФ, а так же меры по снижению антропогенного воздействия на окружающую среду. Принимаемые меры подкрепить инженерным расчётом. Так же необходимо обеспечить безопасность в чрезвычайных и аварийных ситуациях.
13.1 Описание рабочих мест, оборудования и выполняемых операций на производстве
Рассматривается производство детали - корпус, которая является составной частью режущего инструмента - расточная оправка. Объём производства составляет в проектируемом варианте 5000 деталей в год при двусменном режиме работы. Поэтому механическая обработка корпуса ведется при невысокой автоматизации труда. Основные трудоемкие операции выполняются на автоматических станках и станках с ЧПУ (фрезерно-центровальная операция, токарные, фрезерные, сверлильные операции, операция термообработки, центрошлифовальная операция и шлифовальные операции). Помимо металлорежущего оборудования в комплекс входят: контрольная установка, моечная машина, сушильная установка и слесарные верстаки с набором различного инструмента. В технологическом процессе предусмотрены: быстросменное крепление инструмента, наладка его вне станков и хранение в инструментальных шкафах.
На станках режущей группы для смазки и охлаждения зоны резания применяем индустриальные масла с серосодержащей присадкой (ИС 12 - 80% и ЛЗ-26-СО - 20%). В присадках смазывающе-охлаждающих технологических средств (СОТС) содержатся 3-5% серы и 0,7-1,5% хлора.
Загрузка и транспортировка деталей между станками осуществляется с помощью загрузочно-разгрузочных устройств и транспортных потоков. В таблице 13.1 приведена краткая характеристика проектируемого варианта.
Таблица 13.1
Краткая характеристика проектируемого варианта
№ операции |
Наименование операции |
Оборудование (тип, модель) |
|
00 |
Заготовительная |
ГКМ (горизонтально-ковочная машина) |
|
05 |
Фрезерно-центровальная |
Фрезерно-центровальный МР-71М |
|
10 |
Токарная (черновая) |
Токарно-винторезный с ЧПУ 16К20Ф3 |
|
15 |
Токарная (чистовая) |
Токарно-винторезный с ЧПУ 16К20Ф3 |
|
20 |
Круглошлифовальная |
Круглошлифовальный ВНU 32 |
|
25 |
Наладочная |
Фрезерный с ЧПУ MAHO 700 |
|
30 |
Фрезерная (предварительная) |
Фрезерный с ЧПУ MAHO 700 |
|
35 |
Фрезерная (чистовая) |
Фрезерный с ЧПУ MAHO 700 |
|
40 |
Слесарная |
Слесарный стол |
|
45 |
Координатно-расточная |
Координатно-расточной 2А450 |
|
50 |
Меднение |
- |
|
55 |
Цементация |
Термопечь |
|
60 |
Закалка |
Термопечь |
|
65 |
Моечная |
Моечная машина Ocifel |
|
70 |
Центрошлифовальная |
Центрошлифовальный ZSM5100 |
|
75 |
Слесарная |
Слесарный стол |
|
80 |
Круглошлифовальная (предварительная) |
Круглошлифовальный ВНU 32 |
|
85 |
Круглошлифовальная (чистовая) |
Круглошлифовальный ВНU 32 |
|
90 |
Слесарная |
Слесарный стол |
|
95 |
Маркировочная |
Слесарный стол |
|
100 |
Моечная |
Моечная машина Ocifel |
|
105 |
Контрольная |
Контрольный стол |
Проектируемое производство относится к серийному типу. Поэтому максимальной автоматизации в разрабатываемом варианте не требуется. Но в настоящее время существует необходимость в гибкости автоматизации. Возрастающие запросы рынка на изменения, как самой продукции, так и ее стоимости поставили перед производителем новые задачи, такие как увеличение производительности, улучшение условий труда за счет внедрения более прогрессивных методов обработки (увеличение стойкости инструмента, увеличение режимов обработки, скорости, подачи), которые трудновыполнимы при жесткой автоматизации производства. На используемом в проекте оборудовании, станках с числовым программным управлением и на широкоуниверсальных станках будет вестись обработка и других деталей, значит, оборудование может располагаться не в строгом соответствии ходу технологического процесса. Расстояние между станками соответствует санитарно - гигиеническим нормам: ширина переходов равна одному метру, для движения погрузчиков предусмотрены проезды шириной не менее трёх метров.
Но по наличию опасных и вредных производственных факторов (ОВПФ) проектируемое производство может превосходить существующее.
В данном проекте проведено исследование автоколебаний технологической системы на операции шлифование с целью повышения качества обработанной поверхности.
В данном проекте мы совершенствуем заготовительную операцию. В базовом, заводском варианте применялся круглый прокат по ГОСТ 2590-88, мы заменяем его на штамповку, что сократит машинное время на операции токарной черновой, затрачиваемое на снятие лишнего припуска и напуска.
В проектном варианте операции 010 Токарная черновая и 015 Токарная чистовая выполним с одного установа, при этом применяем специальный комбинированный штырьково-кулачковый патрон.
В проектный вариант вводим операцию 050 Фрезерно-центровальную, что повысит качество ТБ, а также точность линейных размеров при изготовлении детали. Наряду с этим уменьшается время на подготовку ТБ, выполняемых в базовом ТП с двух установов на токарном станке.
Вместо операции токарной после ТО, применяемой для правки центровых фасок, выполняемых на двух установах, вводим операцию центрошлифовальную, выполняемую с одного установа, что существенно сократит машинное время, повысит качество ТБ, следовательно и точность размеров, получаемых на операции шлифования.
В проектном варианте на всех токарных операциях заменяем станок 1К62 на 16К20Ф3.
13.2 Опасные вредные производственные факторы (ОВПФ) рассматриваемого производственного объекта
13.2.1 Опасность травмирования рабочих объектами производственного процесса
Источники опасности и вредности, возникающие при обработке корпуса:
- электродвигатели и электропроводка металлорежущих станков, так как может произойти поражение электрическим током;
- на операциях механообработки опасными факторами являются вращающийся инструмент либо шпиндель станка, а так же движущиеся части (суппорт, стол и т. д.), так как может произойти захват одежды, волос, конечностей при нарушении правил безопасной эксплуатации, либо может привести к ушибу рабочего;
- смазочно-охлаждающие технологические средства, применяемые на всех операциях резания, так как возможно их возгорание;
- пыль и абразивная стружка, образующаяся при шлифовании, так как с течением времени возможно заболевание рабочих, загрязнение окружающей среды;
- испарение моющего раствора из-за недостаточной герметичности камер моечных машин - создание повышенной влажности воздуха.
- неблагоприятные параметры микроклимата и недостаточное естественное и искусственное освещение, так как приводит к профессиональным заболеваниям;
- наличие вибраций и шумов, так как приводит к профессиональным заболеваниям.
13.2.2 Возможность загрязнения воздушной среды производственных помещений аэрозолями и токсичными веществами
Обработка резанием детали корпус происходит с применением смазочно-охлаждающих технологических средств, отчего воздух загрязняется аэрозолями (туманами) этих веществ, а так же металлической и абразивной пылью.
Вредные вещества из воздуха проникают в организм человека главным образом через дыхательные пути, а также через кожу и оказывают токсическое действие на организм человека, вызывая раздражение слизистых оболочек дыхательных путей. В процессе обработки образуется железная пыль, которая, попав в лёгкие, оседает там. В результате могут возникнуть профессиональные заболевания.
Поэтому, в цехе и, особенно у шлифовального оборудования, а так же на участке термообработки, необходимо улавливание аэрозолей и пыли с помощью вытяжной вентиляции, отсасывающей загрязнённый воздух по трубопроводам к пыле-, газоочистной установке, в качестве которой можно использовать электрофильтр, основанный на ионизации газовых молекул в электрическом поле высокого напряжения.
13.2.3 Неблагоприятные параметры микроклимата рабочих мест и производственных помещений
В соответствии с ГОСТ 12.1.005 - 88 устанавливаем оптимальные и допустимые метеорологические условия для рабочей зоны помещения. Оптимальная температура воздуха 18 22С; оптимальные величины относительной влажности составляют 40 60 %; скорость движения воздуха в зимнее время не должна превышать 0,2 0,5 м/с, летом - 0,2 1,0 м/с.
Необходимо поддерживать постоянство данных параметров микроклимата, т. к. их колебания могут привести к возникновению простудных заболеваний, заболеваний дыхательных путей и сердечно-сосудистой системы рабочих. Особенно важно поддерживать постоянство данных параметров микроклимата на участке термической обработки детали.
13.2.4 Недостаточное естественное и искусственное освещение
Правильно спроектированное и выполненное освещение на машиностроительных предприятиях обеспечивает возможность нормальной производственной деятельности. Недостаточное освещение отрицательно влияет на рабочих. Оно ухудшает зрение и состояние нервной системы человека. Кроме того, от освещения зависит производительность труда и качество выпускаемой продукции. Следовательно, его недостаток может привести к ухудшению производственного процесса.
На проектируемом участке существует недостаток естественного освещения, поэтому искусственное освещение, осуществляемое электрическими лампами, в целях создания наилучших условий видения, должна отвечать следующим требованиям:
а) освещённость на рабочем месте должна соответствовать характеру зрительной работы, который определяется объектом различения, фоном, контрастом;
б) необходимо обеспечить достаточно равномерное распределение яркости на рабочей поверхности, а также в пределах окружающего пространства.
13.2.5 Наличие заземления
Опасность поражения людей электрическим током может возникнуть в случае прикосновения к частям электроустановки или оборудования, не находящимся под напряжением, но с возможностью оказаться под ним при замыкании на корпус электрооборудования. Для обеспечения безопасности человека, электроустановки оборудуются защитой, которая выполняется в виде защитного заземления, сопротивление которого не должно превышать нормированной величины Rm = 4 Ом.
13.2.6 Наличие вибраций и шума
Причиной возбуждения вибраций являются возникающие при работе машин и агрегатов неуравновешенные вращающиеся и движущиеся части. Источником возбуждения вибраций могут быть кривошипно-шатунные механизмы, гидравлические удары и т. д. В проектируемом варианте присутствуют вибрации системы СПИД, которые далее передаются на режущий инструмент.
По степени действия на человека различают общую и локальную вибрации. Общая вызывает сотрясение всего организма человека, местная вовлекает в колебательное движение отдельные части его тела.
Эффективным средством защиты от вибрации является виброизоляция. Она является наиболее эффективным методом снижения общей вибрации на рабочих местах. Между источником вибрации (машиной) и защищаемым объектом (фундаментом) помещают упругие элементы - амортизаторы, препятствующие передаче колебаний. Это могут быть простейшие резиновые амортизаторы в форме цилиндров, колец или призм. Корпуса самого оборудования, по возможности, должны быть выполнены из вибропоглащающего материала, например чугун и т.п.
На предприятии большой вред организму человека наносит так же шум. Согласно СНиП 23-05-95 шумом называется всякий нежелательный для человека звук. Динамический диапазон звуков, воспринимаемых человеком, простирается от порога слышимости (0 дБ) до порога болевых ощущений (130 дБ). Под воздействием продолжительного громкого шума развивается тугоухость, а иногда и полная глухота. Под влиянием сильного шума (90 - 100 дБ) притупляется острота зрения, появляются головные боли и головокружение, повышается кровяное артериальное давление, что может привести к гипертонии и другим болезням.
Основные источники шума на участке - гидроприводы, электродвигатели, зубчатые и ременные передачи, подшипники, особенно при наличии износа, перекосов и дисбаланса движущихся частей, а также сам процесс резания и вибрации технологической системы СПИД.
Для снижения шума можно применить следующие методы: уменьшение шума в источнике; рациональная планировка предприятий и цехов; акустическая обработка помещений; уменьшение шума на пути его распространения и, самое главное, регулярная проверка и наладка оборудования для устранения шумов, возникающих в процессе износа частей оборудования.
Аэродинамические шумы на участке являются главной составляющей шума вентиляторов, системы вентиляции. Наиболее эффективной мерой борьбы с шумом вентиляторов является снижение окружной скорости и размеров рабочих колёс.
Гидродинамические шумы возникают вследствие стационарных и нестационарных процессов в жидкостях (кавитации, турбулентности потока, гидравлических ударов). Меры борьбы с таким шумом - это улучшение гидродинамических характеристик насосов и выбор оптимальных режимов их работы.
Электромагнитные шумы возникают в электрических машинах и оборудовании. Снижение такого шума осуществляется путём конструктивных изменений в электрических машинах, например, путём изготовления скошенных пазов якоря ротора. В трансформаторах необходимо применять более плотную прессовку пакетов, использовать демпфирующие материалы.
При планировании участка изготовления корпуса учитывались все эти источники шума, поэтому на момент монтажа они были сведены к минимуму, отклонения от нормы происходят в процессе износа оборудования и устраняются путем его систематической подналадки.
В результате проведённого анализа и идентификации опасных и вредных производственных факторов оформим таблицу 13.2, с указанием того или иного производственного фактора и видов работ или оборудования, при работе на котором он встречается.
Таблица 13.2
Анализ ОВПФ разработанного проекта
Операции |
ОВПФ |
Воздействие на человека |
Воздействие на окружающую среду |
|
00 Заготовительная |
Вращающиеся и движущиеся части оборудования, СОТС, высокое напряжение в электросетях, повышенный уровень шума, вибрация |
Ушибы, электрические удары, опасность профзаболеваний |
Загрязнение воздуха аэрозолями СОТС, загрязнение водоёмов сточными водами, загрязнение окружающей среды твёрдыми промышленными отходами |
|
05 Фрезерно-центровальная |
Вращающиеся и движущиеся части оборудования, СОТС, высокое напряжение в электросетях, повышенный уровень шума, вибрация |
Ушибы, электрические удары, опасность профзаболеваний |
Загрязнение воздуха аэрозолями СОТС, загрязнение водоёмов сточными водами, загрязнение окружающей среды твёрдыми промышленными отходами |
|
10, 15 Токарная |
Вращающиеся и движущиеся части оборудования, СОТС, высокое напряжение в электросетях, повышенный уровень шума, опасность пореза о стружку |
Ушибы, порезы, электрические удары, опасность профзаболеваний |
Загрязнение воздуха аэрозолями СОТС, загрязнение водоёмов сточными водами, загрязнение окружающей среды твёрдыми промышленными отходами |
|
20, 80, 85 Кругло-шлифовальная |
Вращающиеся и движущиеся части оборудования, СОТС, высокое напряжение в электросетях, повышенный уровень шума, абразивная пыль |
Ушибы, электрические удары, опасность профзаболеваний |
Загрязнение воздуха аэрозолями СОТС, сточные воды, загрязнение окружающей среды твёрдыми промышленными отходами |
|
25 Наладочная |
Вращающиеся и движущиеся части оборудования, СОТС, высокое напряжение в электросетях, повышенный уровень шума |
Ушибы, электрические удары, опасность профзаболеваний |
Загрязнение воздуха аэрозолями СОТС, загрязнение водоёмов сточными водами, загрязнение окружающей среды твёрдыми промышленными отходами |
|
30, 35 Фрезерная |
Вращающиеся и движущиеся части оборудования, СОТС, высокое напряжение в электросетях, повышенный уровень шума |
Ушибы, электрические удары, опасность профзаболеваний |
Загрязнение воздуха аэрозолями СОТС, загрязнение водоёмов сточными водами, загрязнение окружающей среды твёрдыми промышленными отходами |
|
45 Координатно- расточная |
Вращающиеся и движущиеся части оборудования, высокое напряжение в электросетях |
Ушибы, электрические удары, опасность профзаболеваний |
Загрязнение окружающей среды твёрдыми промышленными отходами |
|
50, 55, 60 Термическая (меднение), (цементация), (закалка) |
Высокая температура и низкая влажность, высокое напряжение в электросетях |
Ожоги, удушье, электрические удары, опасность профзаболеваний |
Загрязнение водоёмов сточными водами, загрязнение окружающей среды твёрдыми промышленными отходами |
|
65, 100 Моечная |
Высокое напряжение в электросетях, повышенная влажность воздуха |
Электрические удары, опасность профзаболеваний |
Загрязнение водоёмов сточными водами |
|
70 Центро-шлифовальная |
Вращающиеся и движущиеся части оборудования, СОТС, высокое напряжение в электросетях, повышенный уровень шума, абразивная пыль |
Ушибы, электрические удары, опасность профзаболеваний |
Загрязнение воздуха аэрозолями СОТС, загрязнение водоёмов сточными водами, загрязнение окружающей среды твёрдыми промышленными отходами |
|
75, 90 Слесарная |
Острые кромки, заусенцы, возникшие после мехобработке, недостаточная освещенность рабочей зоны |
Ушибы, порезы, опасность профзаболеваний |
Загрязнение окружающей среды твёрдыми промышленными отходами |
|
95 Маркировочная |
Острые кромки, заусенцы, возникшие после мехобработке, недостаточная освещенность рабочей зоны |
Ушибы, порезы, опасность профзаболеваний |
Загрязнение окружающей среды твёрдыми промышленными отходами |
|
105 Контрольная |
- |
- |
- |
13.3 Организационные, технические мероприятия по созданию безопасных условий труда
13.3.1 Расчет искусственного освещения
Свет является одним из важнейших условий существования человека, так как влияет на состояние его организма. Правильно организованное освещение стимулирует процессы нервной деятельности и повышает работоспособность человека. При недостаточном освещении человек работает менее продуктивно, быстро устаёт, растёт вероятность ошибочных действий, что может привести к его травматизму. Согласно статистики, 5% производственных травм происходит из-за такого профессионального заболевания, как рабочая миопия (близорукость), которая возникает в результате недостаточного или нерационального освещения.
При расчёте искусственного освещения последовательно решается ряд вопросов.
1. Выбор типа источника света. Согласно рекомендациям [12], с учётом того, что температура в помещении не понижается ниже 10С, а напряжение в сети не падает ниже 90% от номинального, то отдадим предпочтение экономичным газоразрядным люминесцентным лампам.
2. Выбор системы освещения. В нашем случае применяем общее освещение.
3. Выбор типа светильника. Проведя анализ выпускаемых промышленностью светильников [12], считаем, что наиболее подходящим для цеха будут светильники типа ОД.
4. Распределение светильников и определение их количества. Высота подвеса светильников в цехе h = 3 м. Отношение расстояния между центрами светильников к высоте их подвеса над рабочей поверхностью по таблице 10 [12] равно для светильников типа ОД kх = l/h = 1,4.
Зная эти величины, рассчитаем расстояние между центрами светильников:
(13.1)
5. Определение нормируемой освещённости на рабочем месте. По таблице 11 [12] определяем норму освещённости, в зависимости от характеристики зрительной работы, разряда и подразряда зрительной работы. В нашем случае E = 300 лк.
6. Расчёт мощности источника света. Для расчёта общего освещения горизонтальной поверхности используют метод светового потока. Основное уравнение метода:
, (13.2)
где Ф - световой поток одной лампы, лм;
E - минимальная нормируемая освещённость, лк;
S - площадь помещения, м2;
k - коэффициент запаса, учитывающий старение ламп, запыление и загрязнение светильников;
z - отношение средней освещённости к минимальной (в большинстве случаев z = 1,1…1,5);
N - число светильников;
- коэффициент использования светового потока, зависящий от КПД светильника, коэффициента отражения потока, стен, высоты подвеса светильников и размеров помещений;
При решении задачи разработки мероприятий по охране труда на производстве, как правило, при расчёте искусственного освещения определяют необходимое количество светильников в помещении. Из формулы 14.2 выражаем количество светильников N, получаем:
, (13.3)
Далее находим площадь помещения S = 450 м2; коэффициент запаса k = 1,5 - выбирается по таблице 13 [12]; коэффициент неравномерности освещённости в пределах z = 1,1…1,5; значение светового потока Ф = 4250 лм - выбирается по таблице 14 [12] в зависимости от типа источника света тип ЛД80-4. Для определения значения коэффициента использования светового потока необходимо определить индекс помещения.
, (13.4)
где b - ширина помещения, м;
l - длина помещения, м;
h - высота подвеса светильника над рабочей поверхностью, м.
Таким образом
Значение коэффициента использования светового потока = 67% - выбирается по таблице 17 и 18 [12] в зависимости от типа источника света, индекса помещения и коэффициента отражения.
По формуле 13.3 определяем количество светильников, считая, что в каждом из них по две лампы.
Принимаем N = 41.
7. Разработка проектировочной схемы расположения светильников. В проектировочной схеме следует указать значение величины l - расстояние от крайних светильников до стен; L - расстояние между соседними светильниками (рассчитано ранее). Величину l находят по зависимости l = 0,3…0,5L = 0,5*4 = 2 м. Схема расположения светильников приведена на рисунке 13.1.
Рис. 13.1. Схема расположения светильников
Люминесцентные и другие ртутные лампы, которые вышли из строя нельзя бесконтрольно выбрасывать. Они подлежат утилизации, поскольку в них содержится опасная для здоровья человека ртуть. Такие лампы нельзя отвозить на свалки и производить захоронение в землю, так как это представляет угрозу заражения почвы, воздуха и воды. На предприятиях необходимо организовывать специальные места по вскрытию и удалению ртути из таких ламп.
13.3.2 Расчет механической вентиляции
Под вентиляционной системой понимается совокупность различных по своему назначению вентиляционных участков, способных обслуживать отдельные помещения и корпус. Вентиляционные системы, используемые в производственных корпусах, можно представить в виде структурной схемы рисунок 13.2.
Рис. 13.2. Структурная схема систем вентиляции
По способу подачи воздуха механическая вентиляция бывает: приточной, вытяжной и приточно-вытяжной. Схемы общеобменной вентиляции приведены на рисунке 13.3.
Рис. 13.3. Схема механической вентиляции
Проведем расчет необходимого количества воздуха для цеха методом кратности воздухообмена К, применяемый для ориентировочных расчетов, когда не известны виды и количества выделяющихся вредных веществ [15].
- отношение воздухообмена, создаваемого в помещении, к внутреннему объему помещения. Показывает, сколько раз в течение часа весь объем помещения заполняется вводимым в помещение приточным воздухом.
, (13.5)
где S - площадь помещения, м2;
h - высота помещения, м;
V - объём помещения, м3.
Для определения воздухообмена из условия удаления из помещения углекислоты СО2 используют формулу:
, (13.6)
где L - воздухообмен, м3/ч;
G - количество углекислоты, выделяющейся в помещении, при легкой физической работе G = 30 л/ч;
X1 = 0,6 л/м3 - концентрация СО2 в наружном (приточном) воздухе для города;
X2 = 1 л/м3 - допустимая концентрация СО2 в воздухе помещения с постоянным пребыванием людей.
Тогда,
(13.7)
где 22 - кол-во рабочих, занятых в работе.
Количество приточного воздуха должно быть не менее 75 м3/ч на одного человека, при объеме помещения, приходящегося на него, менее 138 м3 . Если естественное проветривание невозможно, то в такие помещения нужно подавать не менее 60 м3/ч на одного человека.
Среди операций технологического процесса изготовления корпуса присутствуют операции шлифования, на которых воздух загрязняется абразивной пылью, поэтому следует предусмотреть местную вытяжную вентиляцию рисунок 5 [12].
Для улавливания вредностей непосредственно в местах их образования применяется местная вытяжная вентиляция. Вытяжная вентиляция выполняется, как правило, в виде местных отсосов - вытяжных шкафов, камер, зонтов, панелей, щелей, бортовых отсосов.
Расчёт вытяжных шкафов. Объём воздуха, удаляемого вытяжными шкафами, определяется по формуле [12]
, (13.8)
где F - площадь открытого проёма, м2;
V - средняя скорость движения всасываемого воздуха в открытом проёме, м/с, она колеблется в пределах 0,3…0,25 м/с в зависимости от токсичности удаляемых выделений.
Согласно формуле 13.8
.
Таким образом, можно заключить, что вентиляция помещения соответствует санитарно - гигиеническим нормам.
13.3.3 Определение категории помещения по пожаро- и взрывоопасности
Проектирование и эксплуатация всех промышленных предприятий регламентируется «Строительными нормами и правилами» (СНиП II-90-81, СНиП II-2-80), «Правилами устройства электроустановок» (ПУЭ-76), а также «Типовыми правилами пожарной безопасности для промышленных предприятий (1975 г.)». В соответствии со СНиП II-2-80 все производства делят по пожарной, взрывной и взрывопожарной опасности на категории А, Б, В, Г и Д. Категория производства по пожарной опасности в значительной степени определяет требования к зданию, его конструкциям и планировке, организацию пожарной охраны и ее техническую оснащенность, требования к режиму и эксплуатации. Поэтому вопрос отнесения производства к той или иной категории является исключительно важным.
В данном случае проектируемое предприятие относится к категории Д - это производства, в которых обрабатываются негорючие вещества, а материалы в холодном состоянии.
13.4 Антропогенное воздействие объекта на окружающую среду и мероприятия по экологической безопасности
13.4.1 Возможность причинения ущерба окружающей среде выбросами в атмосферу
Предприятия машиностроения выбрасывают в атмосферу загрязненный воздух. В результате - постоянное присутствие вредных веществ в воздухе города, которое приводит к хроническим болезням людей (бронхит, астма и т.п.). Кроме того, загрязнённый воздух отрицательно воздействует на животных, птиц, насекомых и на растения.
Для снижения уровня выбросов токсичных веществ в атмосферу необходимо детально проработать технологический процесс, для оценки и снижения этого уровня. На участке воздух загрязняется аэрозолями смазочно-охлаждающих технологических средств, металлической пылью (все операции резания), абразивной пылью (шлифовальные операции) и другими веществами, поэтому перед выбросом в атмосферу он должен очищаться.
Вредные вещества из рабочей зоны выводятся с помощью приточно- вытяжной вентиляции: приточная вентиляция подает воздух в рабочую зону, а вытяжная удаляет -- обе работают одновременно. Количество подаваемого и вытягиваемого воздуха выбирается с учетом требований, предъявляемых к системе вентиляции. Место для забора свежего воздуха выбирается с учетом направления ветра, с наветренной стороны по отношению к выбросным отверстиям, вдали от мест загрязнения. В вентиляционной шахте вытяжной вентиляции устанавливаются специальные фильтры-уловители аэрозолей смазочно-охлаждающих жидкостей, металлической пыли, абразивной пыли и других веществ, которые по истечении своего срока годности заменяют на новые.
13.4.2 Загрязнение сточными водами
Промышленные предприятия сбрасывают в водоемы отработанную воду, которая загрязняет сточные воды вредными веществами (песок, окалина, металлическая стружка, пыль, минеральные масла и т. п.).
При работе используется большое количество смазывающе-охлаждающих технологических средств (СОТС), масляных эмульсий. Образующиеся при этом маслоэмульсионные воды представляют собой водные растворы эмульсолов. Такую сточную воду требуется очищать от маслопримесей специальными адсорбентами. Необходимость в очистке воды также возникает на операциях промывки деталей раствором тринатрий-фосфата.
13.4.3 Возможность загрязнения окружающей среды твёрдыми промышленными отходами
Отходы машиностроительных предприятий в основном образуются от производства проката, литья, механической обработки. В данной технологии в процессе производства твёрдые отходы образуются в виде амортизационного лома (модернизация оборудования, оснастки), металлической стружки, осадков и пыли (отходы систем очистки воздуха).
Извлечённая при обработке металлическая стружка перерабатывается методом переплава. Для чего её сначала подвергают дроблению на стружкодробилках различных типов (фрезерных, молотковых и валковых). В металлической стружке, предназначенной для переплава, суммарное содержание безвредных примесей, влаги и масла не должно превышать 3%. Наличие этих примесей сверх указанного предела приводит к ухудшению качества выплавляемого металла и к загрязнению окружающей среды. В то же время стружка содержит до 20% СОЖ. Поэтому стружку подвергают обезжириванию, используя центрифуги, моечно-сушильные установки и нагревательные печи. Затем её приводят в компактное состояние, применяя холодное и горячее брикетирование на специальных брикет-прессах. Эти брикеты непосредственно используются в плавильных агрегатах.
Таким образом, технологический процесс оказывается практически безотходным и не влияющим на здоровье людей.
13.4.4 Возможность акустического загрязнения окружающей среды
Многообразие источников шума и вибрации в машиностроении обуславливает наличие всех их разновидностей. Источниками аэродинамических шумов и механических шумов и вибраций высоких уровней являются вентиляционные системы, насосы, компрессорные установки, суммарный уровень шумов которых (в основном высокочастотных) достигает 135145 дБ. Тогда как допустимый уровень шума для территории жилой застройки 3367 дБ.
Совокупность возникающих под действием шума нежелательных изменений в организме человека можно рассматривать как шумовую болезнь. Комплекс симптомов, характерный для воздействия вибрации, получил название вибрационной болезни.
Оборудование, по возможности, целесообразнее установить на резиновые амортизаторы, что снижает уровень вибрации в 2 раза и делает его неопасной для окружающей среды. Вибрация в вентиляционных установках снижается путём применения рёбер жёсткости.
13.5 Безопасность в чрезвычайных и аварийных ситуациях
Крупные аварии на предприятии могут возникать в результате стихийных бедствий, нарушения технологии производства, нарушения правил эксплуатации оборудования и установленных мер безопасности.
Стихийные бедствия -- явления природы, вызывающие экстремальные ситуации, такие как землетрясения, наводнения, пожары и т. п. Под аварией понимают внезапную остановку работы или нарушение процесса производства на промышленном предприятии, приводящее к повреждению или уничтожению материальных ценностей. Под катастрофой понимают внезапное бедствие, событие, влекущее за собой трагические последствия. Катастрофы сопровождаются разрушением зданий, различных сооружений, уничтожением материальных ценностей и гибелью людей. Наиболее опасным следствием крупных аварий являются пожары и взрывы.
Для ликвидации последствий, вызванных стихийными бедствиями или катастрофами, привлекаются формирования общего назначения и службы гражданской обороны. Основная задача формирований при ликвидации -- спасение людей и материальных ценностей. Организация работ производится с учетом обстановки, степени разрушения и повреждения зданий. Работы должны производятся в кратчайшие сроки, так как необходимо спасти жизни людей и оказать раненым экстренную медицинскую помощь, а также предотвратить последствия катастрофы.
К мероприятиям по предотвращению крупных аварий и катастроф относятся: закладка в проекты вновь создаваемых объектов планировочных, технических и технологических решений, которые должны максимально уменьшить вероятность возникновения аварий или значительно снизить материальный ущерб, если авария всё же произойдет. Кроме того, должны быть предусмотрены мероприятия по эвакуации персонала при чрезвычайных ситуациях (ЧС). В случае появления непосредственной опасности возникновения чрезвычайной ситуации, в штабе гражданской обороны должен производится инструктаж людей по необходимым действиям.
Одним из последствий аварии на предприятиях может стать выброс токсичных отходов в окружающую среду. При возникновении очага поражения токсичными отходами туда высылается радиационная и химическая, а также медицинская разведка для уточнения места заражения и направления распространения зараженного воздуха. Подготавливаются формирования для проведения спасательных работ. В очаге поражения оказывается помощь пострадавшим, проводится их сортировка и эвакуация в медицинские учреждения. Очаг поражения оцепляется - проводится обеззараживание местности, а также санитарная обработка. В первую очередь надеваются противогазы на поражённых людей, им оказывается первая медицинская помощь, вводятся антидоты. Часто последствием аварии может стать разлив нефти или масла на поверхности водоёмов. Удаляют нефтяную плёнку с поверхности воды с помощью абсорбентов.
При проектировании рабочего участка для изготовления корпуса оправки расточной необходимо учесть возможные опасные, критические и аварийные ситуации, которые могут возникнуть в процессе работы, а также рассмотреть вопрос об их предотвращении. На производстве существует четыре вида потенциальных опасностей, обуславливающих применение соответствующих методов и средств защиты:
1. Динамическое воздействие на человека (толчки, удары) исполнительных устройств или других движущихся механизмов, в результате непредусмотренных процессом неожиданных форм освобождения энергии и воздействия ее на человека;
2. Механическое воздействие на человека (прижим, сдавливания) исполнительных устройств, возникающее из-за конструктивных особенностей, а также неправильных действий оператора;
3. Типичные факторы потенциальной опасности: электрический ток, электрический удар, электродуга и т.д.
4. Пожаро- и взрыво- опасность.
Для защиты человека от опасности действия динамического, механического и электрического воздействия применяют метод, обеспечивающий невозможность проникновения человека в опасную зону.
Метод состоит в разработке, выборе и применении ограждающих, блокирующих, предупреждающих, сигнализирующих систем, обеспечивающих недоступность человека к опасному объекту. В частности, компоновка всего оборудования произведена с учетом требований техники безопасности. Расстояние между основным технологическим оборудованием и между оборудованием и ограждением - не менее 600 мм.
Важным фактором является пожарная безопасность производства. Производственные цеха должны быть оборудованы специальными противопожарными средствам и средствами пожаротушения, к таким относятся набор экстренного тушения огня, в который входит кирка, лопата, лом, песок и огнетушитель. К организованным средствам пожаротушения относятся, заложенные в архитектуре здания средства противопожарной защиты. Так же противопожарная сигнализация функция, которой сигнализировать при пожаре.
Большую опасность на машиностроительных предприятиях представляют пожары и взрывы, поэтому для эвакуации необходимо наличие эвакуационных выходов.
Причиной возникновения на участке пожара может быть:
- образование искры, получившейся в результате короткого замыкания;
- образование искр при обработке абразивным инструментом;
- возгорание в результате контакта промасленной ветоши или спецодежды с горячими частями оборудования;
- неосторожное обращение с огнём;
- неосторожное обращение с легко воспламеняющимися горюче - смазочными материалами;
- загорание мусора из-за большого скопления и не соблюдения режима курения;
- самовозгорание в воздухе;
- загорание масла в поддоне станка из-за разрыва шлангов.
На участке используются следующие средства пожаротушения:
- огнетушители ОХП-10, ОВП-10, ОУ-2.5-8;
- пожарные краны;
- пожарные щиты;
- участок оборудован средствами связи и пожарными извещателями.
Мероприятия режимного характера:
- контроль за производством огневых и покрасочных работ;
- контроль за режимом курения.
В настоящее время помимо вышеуказанных потенциальных опасностей присоединилась ещё одна не менее важная угроза - это угроза терроризма. Для защиты человека от этой опасности проводятся предупредительные мероприятия, взывая к бдительности граждан, сообщать о подозрительных лицах и предметах в правоохранительные органы. Так же проводится ряд лекционных мероприятий, на случай если вы окажетесь в заложниках и как вести себя в таких ситуациях.
Выводы
Рассмотрев опасные вредные производственные факторы (ОВПФ) производственного объекта, воздействие этого объекта на окружающую среду, возможные чрезвычайные и аварийные ситуации на его территории и предложив меры по их устранению можно сделать вывод о том, что проектируемый технологический процесс удовлетворяет строительным и санитарно-гигиеническим нормам и не наносит сильного вреда человеку и окружающей среде.
14. ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРОЕКТА
Задача раздела - рассчитать себестоимость по базовому и проектному вариантам, произвести выбор оптимального варианта и определить показатели его экономической эффективности.
Расчет будем вести по методике [44].
14.1 Краткая характеристика сравниваемых вариантов
Таблица 14.1
Краткая характеристика сравниваемых вариантов
Базовый вариант |
Проектируемый вариант |
|
Технологический процесс обработки корпуса оправки расточной содержит следующие операции: 00 - заготовительная; 05 - Токарная черновая (2 установа); 10 - Токарная чистовая (2 установа); 15 - Круглошлифовальная; 20 - Наладочная; 25 - Фрезерная (предварительная); 30 - Фрезерная (чистовая); 35 - Слесарная; 40 - Координатно-расточная; 45 - Меднение; 50 - Цементация; 55 - Закалка; 60 - Моечная; 65 - Токарная; 70 - Круглошлифовальная (предв.); 75 - Круглошлифовальная (чист); 80 - Слесарная; 85 - Маркировочная; 90 - Моечная; |
В технологический процесс обра-ботки корпуса оправки расточной вносятся следующие изменения: 1) 05 операция (токарная) засверловка отверстий пов. 44, 45 и подрезка торцев пов. 1, 25, выполняемая в два установа, заменяется на фрезерно-центровальную (1 установ), что существенно сокращает операци-онное время; 2) На всех токарных операциях заменяем станок 1К62 на 16К20Ф3. 3) Операции 05 и 10 токарная черновая и токарная чистовая выполняем с одного установа вместо двух, при этом применив специальный патрон. 4) Вместо операции 65 Токарной, применяемой для правки центров, выполняемой на двух установах, вводим операцию центро-шлифовальную, выполняемую с |
|
95 - Контрольная. Тип производства - мелкосерийный. Условия труда - нормальные. Форма оплата труда - повременно-премиальная. |
одного установа - это существенно сокращает машинное время и повысит качество ТБ. Тип производства - мелкосерийный. Условия труда - нормальные. Форма оплата труда - повременно-премиальная. |
14.2 Исходные данные для экономического обоснования сравниваемых вариантов
Таблица 14.2
Исходные данные для экономического обоснования сравниваемых вариантов
№ |
Показатели |
Условное обозначе-ние, единица измерения |
Значение показателей |
Источник информа-ции |
||
Базовый |
Проект |
|||||
1 |
Годовая программа выпуска |
5000 |
5000 |
Задание |
||
2 |
Норма штучного времени, в т.ч. машинное время |
8,3 |
4,4 |
Расчет |
||
5,7 |
2,0 |
|||||
100,4 |
50,0 |
|||||
72,2 |
35,5 |
|||||
3,4 |
2,4 |
|||||
2,0 |
1,4 |
|||||
30,1 |
30,1 |
|||||
10,2 |
10,2 |
|||||
3 |
Часовая тарифная ставка Рабочего-оператора: Наладчика: |
34,97 37,55 |
34,97 37,55 |
Данные кафедры ЭиУП (Прил. 11) |
||
4 |
Эффективный годовой фонд времени рабочего |
3779 |
3779 |
Или расчет из раздела дипломной работы - "Планировка участка" |
||
5 |
Коэффициент доплаты до часового, дневного и месячного фондов |
1,08 |
1,08 |
Данные кафедры ЭиУП (Прил. 11) |
||
6 |
Коэффициент доплат за профмастерство (начиная с 3-го разряда) |
1,067 |
1,067 |
Данные кафедры ЭиУП (Прил. 11) |
||
7 |
Коэффициент доплат за условия труда |
1,1 |
1,1 |
Данные кафедры ЭиУП (Прил. 11) |
||
8 |
Коэффициент доплат за вечерние и ночные часы |
1,1 |
1,1 |
Данные кафедры ЭиУП (Прил. 11) |
||
9 |
Коэффициент премирования |
1,25 |
1,25 |
Данные кафедры ЭиУП (Прил. 11) |
||
10 |
Коэффициент выполнения норм |
1,25 |
1,25 |
Данные кафедры ЭиУП (Прил. 11) |
||
11 |
Коэффициент отчисления на социальные нужды |
0,26 |
0,26 |
Данные кафедры ЭиУП (Прил. 11) |
||
12 |
Трудоемкость проектирования техники, технологии |
85 |
85 |
Прил. 8 |
||
13 |
Цена единицы оборудования |
150000 |
230000 |
Прил. 4 или п. 5-7 списка литературы |
||
150000 |
445000 |
|||||
150000 |
650000 |
|||||
520000 |
520000 |
|||||
14 |
Коэффициент расходов на доставку и монтаж оборудования (0,1…0,25) |
Подобные документы
Разработка технологического процесса изготовления корпуса гидроцилиндра типа Г29-3 в условиях среднесерийного типа производства. Анализ назначения и условий работы детали, технологический маршрут и план ее изготовления. Выбор и проектирование заготовки.
дипломная работа [637,7 K], добавлен 17.10.2010Выбор средств технологического оснащения изготовления кулачкового самоцентрирующего цангового патрона. Нормирование технологического процесса, расчет и проектирование станочного и контрольного приспособлений, режущего инструмента, припусков на обработку.
дипломная работа [886,1 K], добавлен 17.10.2010Технологический анализ детали, материалов, твердости поверхности. Расчет припусков на обработку, выбор заготовки, размерный анализ технологических цепей размеров. Расчет режимов резания по операциям технологического процесса, нормы времени на операции.
курсовая работа [324,9 K], добавлен 16.08.2010Анализ технологичности конструкции детали, направление и специфика данного процесса. Способ получения заготовки и обоснование его выбора. Технологический процесс изготовления вала ступенчатого, нормирование. Расчёт припусков на механическую обработку.
контрольная работа [625,5 K], добавлен 22.02.2011Процесс холодной штамповки. Методы изготовления деталей. Выбор метода изготовления детали. Механические и химические свойства латуни. Усилие вырубки контура детали. Рабочие детали штампов. Расчет припусков на обработку, погрешностей и режимов обработки.
курсовая работа [40,7 K], добавлен 17.06.2013Маршрутный технологический процесс изготовления детали, его роль. Разработка технологической операции процесса резания, расчет основных параметров. Анализ составляющих погрешностей технологической обработки детали, определение соотношения их видов.
контрольная работа [43,7 K], добавлен 28.11.2010Классификация поверхностей детали. Выбор типа производства и стратегии производственного процесса, методов обработки корпуса. Экономическое обоснование метода получения заготовки. Разработка рабочего чертежа заготовки. Припуски на механическую обработку.
дипломная работа [259,2 K], добавлен 12.07.2009Технологический процесс изготовления корпуса, его чертеж, анализ технологичности конструкции, маршрут технологии изготовления, припуски, технологические размеры и режимы резания. Методика расчета основного времени каждого из этапов изготовления корпуса.
курсовая работа [3,6 M], добавлен 12.04.2010Приспособления механосборочного производства как основная группа технологической оснастки. Планшайба: часть механизма, служащая для предотвращения попадания грязи и пыли в его внутреннюю полость. Технологический процесс изготовления детали (маршрутный).
курсовая работа [310,5 K], добавлен 21.10.2009Формирование маршрутно-операционного технологического процесса изготовления детали "Фланец". Нормирование операций, выбор оборудования и оснастки. Сведения по точности обработки и качеству поверхностей. Расчет припусков на механическую обработку.
курсовая работа [361,7 K], добавлен 16.11.2014