Расчет редуктора
Определение размеров зубчатых колес тихоходной цилиндрической ступени редуктора. Кинематический расчет: определение передаточного отношения и разбивка его по ступеням. Определение крутящих моментов на валу. Расчет валов по передаваемым моментам.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 18.08.2014 |
Размер файла | 64,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Краткое описание структуры и принципа работы механизма
Привод бегунов состоит из электродвигателя, двух соединительных муфт, пары закрытых цилиндрических зубчатых передач и открытой конической фрикционной передачи.
Электродвигатель преобразует электроэнергию в механическую, вал двигателя совершает вращательное движение, но количество оборотов ротора электродвигателя очень велико для скорости вращения бегунов. Для снижения количества оборотов и увеличения крутящего момента и служит данный редуктор.
Привод бегунов служит для передачи вращающего движения от вала электродвигателя через редуктор на бегуны для приведения их в движение.
Назначение муфты - передача вращающегося момента без изменения его величины и направления.
Зубчатые передачи передают крутящие моменты и движение от одного вала к другому зацеплением. Зубчатые передачи с цилиндрическими колесами с прямым и косым зубом применяют при параллельно расположенных валах.
Фрикционная передача - механическая передача, служащая для передачи вращательного движения (или для преобразования вращательного движения в поступательное) между валами с помощью сил трения, возникающих между катками, цилиндрами или конусами, насаженными на валы и прижимаемыми один к другому.
Редуктор - это механизм, состоящий из зубчатых или червячных передач, заключённых в отдельный закрытый корпус. Служит для передачи вращения от вала двигателя к валу рабочей машины.
Назначение редуктора - понижение угловой скорости и соответственно повышения вращающего момента ведомого вала по сравнению с ведущим.
Редуктор состоит из корпуса, в котором помещаются элементы передачи - зубчатые колёса, валы, подшипники и т.д.
2. Выбор электродвигателя
Определим общий КПД привода по формуле:
?=?12*?25*?32*?4,
где ?1 - КПД соединительной муфты (?1=0,98);
?2 - КПД одной пары подшипников качения (?2=0,99);
?3 - КПД зубчатой цилиндрической передачи (?3=0,96);
?4 - КПД конической фрикционной передачи (?4=0,95).
Определим КПД привода:
?=0,982*0,995*0,962*0,95=0,7996
?
Рдв=
Определим требуемую частоту вращающегося валового двигателя:
U=U1*U2*U3=,
где U1 - передаточное число 1-ой ступени (U1=4…6);
U2 - передаточное число 2-ой ступени (U2=4…6);
U3 - передаточное число 3-ей ступени (U2=1…2).
nвых=10*щвых=20 об/мин
=(4…6)*(4…6)*(1…2)*20=320…1440 об/мин
Выбираем электродвигатель:
Рдв=7,5 кВт, nдв=1000 об/мин
Электродвигатель А4 132М6
3. Кинематический расчет (определение передаточного отношения и разбивка его по ступеням)
Определение передаточного отношение редуктора:
Разобьем полученное передаточное отношение по ступеням
,
где U1 - передаточное число 1-ой ступени (U1=6);
U2 - передаточное число 2-ой ступени (U2=6);
U3 - передаточное число 3-ей ступени (U3=1,4).
Определим частоты вращения и угловые скорости всех валов привода:
1. вал двигателя
2. ведущий вал редуктора
3. промежуточный вал
4. выходной вал
5.
4. Определение крутящих моментов на валу
Крутящий момент на входном валу - валу двигателя:
Крутящий момент на промежуточном валу:
Крутящий момент на выходном валу двигателя:
Крутящий момент на входном валу шнека:
5. Предварительный расчет валов по передаваемым моментам
кинематический редуктор зубчатый вал
где Mк - крутящий момент, действующий в расчетном сечении вала
- допускаемое напряжение на кручение, при определении диаметра выходного конца (?к=(20-30) Н/мм2), принимаем [?]дв=0,25 Н/мм2;при определении диаметра промежуточного вала (?к=(10-20) Н/мм2), принимаем [?]к=0,15 Н/мм2
Полученный диаметр вала округляем до ближайшего значения из R40 нормальных линейных размеров, принимаем d1=30 мм.
Диаметр на промежуточном вале:
Полученный диаметр вала округляем до ближайшего значения из R40 нормальных линейных размеров, принимаем d1=48 мм.
Диаметр на выходном вале:
Полученный диаметр вала округляем до ближайшего значения из R40 нормальных линейных размеров, принимаем d1=71 мм.
Диаметр на входном валу шнека:
Полученный диаметр вала округляем до ближайшего значения из R40 нормальных линейных размеров, принимаем d1=36 мм.
6. Расчет тихоходной цилиндрической ступени редуктора
Выбор материалов для зубчатых колёс
Так как заданием не предусматривается специальных требований к габаритам и массе передачи, выбираем в качестве материала для изготовления зубчатых колёс сталь со средними механическими характеристиками и относительно небольшой стоимостью.
Для шестерни - сталь 40Х, термообработка - улучшение НВ230; для колеса - сталь 45, термообработка - нормализация НВ170. Учитывая нереверсивность передачи (зубья работают одной стороной) определяем допускаемые напряжения, соответствующие базовому числу циклов нагружения.
Расчет допускаемых напряжений
Допускаемые напряжения определяются с учётом фактического числа циклов нагружения.
где допускаемое напряжение при изгибе, соответствующее базовому числу циклов нагружений (таблица 3);
NF0 - базовое число циклов нагружений;
NFE - фактическое число циклов нагружений в течение заданного срока службы механизма;
n = 6 - для колёс из незакаленных сталей и других мягких материалов;
n = 9 - для колёс из закаленных сталей.
При расчёте на изгиб принимается для зубчатых колёс, выполненных из сталей NF0 = 4•106.
При расчёте NFE исходят из того, что за каждый оборот колеса каждый зуб испытывает один цикл нагружения.
NFE = 60 n T,
где n - частота вращения зубчатого колеса, об/мин;
T - время работы передачи за срок службы механизма, час.
Если NFE < NF0, то принимают NFE = NF0.
Если NFE < 2,5•107, то принимают NFE = 2,5•107.
В обоих случаях пересчитывается возможный срок службы механизма.
Фактическое число циклов нагружения зубьев шестерни
NFE1 = 60T n2 = 60*2*104 *167 = 20,04•107;
зубьев колеса
NFE2 = 60T n3 = 60*2*103 27,8 = 3,34•106
Так как NFE2 < 2,5•107, то принимаем NFE2 = 2,5•107
Допускаемые напряжения при изгибе зубьев
Определение чисел зубьев шестерни и колеса, уточнение передаточного отношения
Задаёмся числом зубьев шестерни Z1. Для косозубых передач по условию отсутствия подрезания Zmin ?17 сosв. Принимаем в = 120, тогда Zmin = 17 cos120 = 16. Принимаем Z1=18.
Число зубьев колеса Z2 = Z1u =18Ч6 = 108; принимаем Z2 = 108.
Определение модуля зацепления
Нормальный модуль зацепления определяется из условия прочности зубьев на изгиб [3], [5].
где значения M и Z можно брать как по шестерне, так и по колесу, т.е. следует подставлять либо M1 - вращающий момент на валу шестерни и Z1 -число зубьев шестерни, либо M2 - вращающий момент на валу колеса и Z2 - число зубьев колеса;
Kизн - коэффициент, учитывающий уменьшение толщины зуба в его сечении вследствие износа;
KF - коэффициент нагрузки KF = KFV • KFв, где KFв - коэффициент концентрации нагрузки, учитывающий неравномерность распределения нагрузки по длине зубьев;
KFV - коэффициент динамичности, учитывающий динамическое действие нагрузки.
Ориентировочно значение коэффициента KFV выбирается в зависимости от степени точности зубчатых колёс;
KFL - коэффициент, учитывающий неравномерность распределения нагрузки между зубьями, для прямых зубчатых колёс может быть принято KFL = 0,7 и для косозубых колёс KFL = 0,8;
YF - коэффициент прочности зуба по местным напряжениям определяется по таблице 5 Приложения в зависимости от зубьев колеса (шестерни) - для прямозубых колёс и от фиктивного числа зубьев - для косозубых зубчатых колёс;
Yв = 1 - (в/140) - коэффициент, учитывающий погрешность расчётной схемы при расчёте на изгиб зубьев косозубого зубчатого колеса; для прямозубых колёс Yв = 1,0;
Шbm =b/mn,
где b - ширина венца зубчатого колеса.
Для открытых зубчатых передач обычно Шbm = 10 ч 15.
Расчёт выполняется по зубчатому колесу, для которого отношение [у]F/YF меньше.
По таблице 2 Приложения принимаем Kизн=1,25. Считая, что величина износа зуба по отношению к первоначальной толщине за срок службы передачи не превысит 10%.
Предварительно принимаем KFв = 1,3, поскольку зубчатые колёса расположены консольно относительно опор.
Предварительно по таблице 3 Приложения принимаем 8-ю степень точности и по таблице 4 определяем KFV =1,1 (для колёс 8-й степени точности при HB?350 и окружной скорости до 3 м/с). Тогда KF = KFвЧKFV=1,3Ч1,1=1,43, а KFL= 0,75 (для косозубой передачи).
Рассчитываем эквивалентное число зубьев ZV1=Z1/cos3в= 18/cos3120=20;
ZV2=Z2/cos3в=74/cos3120=116; а также коэффициент Yв=1 - (в/140)=1 - (12/140)=0,914.
Коэффициенты YF1=4,12 и YF2=3,75 определяем по таблице 5 Приложения.
Принимаем Шbm=12. Рассчитываем отношение [у]F /YF:
Так как [у]F1/YF1 > [у]F2/YF2, то расчёт выполняем для зубьев Зубчатого колеса, т.е. в расчётную формулу подставляем величины M2, Z2 и YF2
Расчёт геометрических параметров зубчатой передачи
Диаметр делительных окружностей шестерни и колеса:
d1=mnoЧZ1/cosв=1Ч18/cos120= 18,40 мм; d2=mnoЧZ2/cosв=1Ч108/cos120=110,4 мм.
Диаметры окружностей выступов шестерни и колеса:
da1=d1+2mno=18,4+2Ч1=20,4 мм;
da2=d2+2mno=110,4+2Ч1=112,4 мм.
Диаметр окружностей впадин шестерни и колеса:
df1=d1-2,5mno=18,4-2,5Ч1=15,9 мм;
df2=d2-2,5mno=110,4-2,5Ч1=107,9 мм.
Рабочая ширина зубчатого венца bW = ШbmЧmno = 12Ч1 = 12 мм.
Межосевое расстояние AW = (d1+d2)/2 = (18,4+110,4)/2 = 64,4 мм.
Определение сил в зацеплении
Окружная сила
Ft = 2M1/d1 = 2Ч313,7/18,4 = 34 H.
Радиальная сила
Fr = Ft Чtgб/cosв = 34Чtg200/cos120 = 12,66 H.
Осевая сила
Fa = Ft Чtgв = 12,66Чtg120 = 2,7 H.
Проверочный расчёт зубьев на выносливость по напряжениям изгиба
Уточняется величина коэффициента нагрузки
KF0 = KFв0Ч KFV0 =1,1Ч1,62 = 1,78;
KFV0 = 1,1 для Vок= (рd1n1)/(60Ч1000) = (3,14Ч18,4Ч167)/(60Ч1000) = 0,16 м/с.
Для Шbd = b/d1 =18/18,4 = 0,97 по таблице 4 Приложения находим KFв0 = 1,62.
С учётом консольного расположения зубчатых колёс:
Превышение расчётного напряжения над допускаемым составляет
{(уF - [у]F}/[у]F)}Ч100% = [(16,2 - 140)/140]Ч100% = -88%.
Таким образом, при уточнении значения KF0 оказалось, что фактические расчётные напряжения превышают допускаемые на 31,8%, что требует корректировки и повторного расчёта.
Увеличим модуль передачи и выполним расчеты в той же последовательности.
Принимаем mno= 2,0 мм (СТ СЭВ 310-76, таблица 6 Приложения).
Геометрические параметры зубчатой передачи:
d1 = mnoZ1/cosв = 2Ч18/cos120 = 36,80 мм; df1= d1-2,5mno=36,80-2,5Ч2 = 31,80 мм;
d2 = mnoZ2/cosв = 2Ч74/cos120 = 151,31 мм; df2= d2-2,5mno=151,31-2,5Ч2 = 146,31 мм;
da1 = d1+2mno= 36,80+2Ч2 = 40,80 мм; bW = ШbmЧmno = 12Ч2 = 24 мм;
da2 = d2+2mno=151,31+2Ч2 =155,21 мм; AW = (d1+d2)/2 = (36,8+151,31)/2 = 94,05 мм.
Силы, действующие в зацеплении (окружная, радиальная, осевая):
Ft = 2M1/d1 = 2Ч12500/36,80 = 679,3 Н;
Fr = Ft tgб / cosв = 697,3Чtg200/cos120 = 252,7 Н;
Fa = Fttgв = 679,3Чtg120 = 144,44 Н.
Проверочный расчёт зубьев на выносливость по напряжениям изгиба
KF0 = KFв0ЧKFV0 =1,1Ч1,62 =1,76;
KFV0= 1,1 для Vок= (рЧd1Чn1)/(60Ч1000) = (3,14Ч36,8Ч970)/(60Ч1000) = 1,87 м/с.
Для Шbd1 = b/d1 = 24/36,8 = 0,65 по таблице 4 Приложения находим KFв0 = 1,62 и с учетом консольного расположения зубчатых колёс получаем напряжения изгиба
Размещено на http://www.allbest.ru/
Полученное расчётное напряжение изгиба значительно меньше допускаемого, поэтому принимаем величину рабочей ширины венца bW=14 мм. Тогда фактическое расчётное напряжение будет:
Как видно, такое уменьшение ширины венца не приводит к превышению изгибных напряжений над допускаемыми, но позволяет экономить материал и облегчить конструкцию колеса.
Библиографический список
кинематический редуктор зубчатый вал
1. Толстоногов А.А., Федоров В.В., Янковский В.В.: расчет открытой цилиндрической зубчатой передачи.
2. Глобенко Е.В., Жарков М.С., Толстоногов А.А.: Конструирование и расчет узлов и деталей машин (методическое указание 4133)
3. Беляков В.М., Жарков М.С., Фёдоров В.В., Янковский В.В. Зубчатые передачи подвижного состава: Учебное пособие для студентов. - Куйбышев: КИИТ, 1990.
4. Иванов М.Н. Детали машин. - М.: Высшая школа, 1991.
5. Курсовое проектирование деталей машин: Учебное пособие для учащихся машиностроительных специальностей/ Под ред. Чернавского С.А. - М.: Машиностроение, 1988.
6. Зубчатые передачи: Справочник/ Под ред. Е.Г. Гинзбурга. - Л.:Машиностроение, 1984. - 400 с.
7. Проектирование механических передач: Учебное пособие для машиностроительных техникумов/ Под ред. Чернавского С.А. - М.: Машиностроение, 1984.
8. Курсовое проектирование деталей машин: Учебное пособие для вузов/ Под ред. Ицковича Г.М. - М.: Высшая школа, 1989.
9. Биргер И.А., Шорр Б.Ф., Иосилевич Г.Б. Расчёты на прочность деталей машин.- М.: Машиностроение, 1979.
10. Толстоногов А.А. Детали машин и основы конструирования: Конспект лекций.- Самара: СамГАПС, 2003.
Размещено на Allbest.ru
Подобные документы
Расчет мощностей, передаточного отношения и крутящих моментов. Выбор материала зубчатых колес и определение допускаемых напряжений. Геометрический расчет зубчатых передач с внешним зацеплением. Расчет валов на выносливость. Проверка прочности шпонок.
курсовая работа [375,4 K], добавлен 16.12.2013Расчет конической зубчатой передачи тихоходной ступени. Определение геометрических размеров зубчатых колес. Выбор материалов и допускаемые напряжения. Проверочный расчет цилиндрической передачи. Предварительный расчет валов. Подбор и проверка шпонок.
курсовая работа [601,8 K], добавлен 21.01.2011Определение передаточного числа привода и разбивка его по ступеням. Расчет зубчатых колес. Геометрические параметры быстроходного вала. Конструктивные размеры шестерни и колеса. Подбор подшипников и шпонок для валов. Выбор смазки и сборка редуктора.
курсовая работа [608,3 K], добавлен 03.02.2016Определение общего КПД привода. Расчет мощности и выбор электродвигателя. Определение передаточного числа редуктора, конструктивных особенностей зубчатых колес и деталей редуктора. Расчет тихоходной и быстроходной передач. Ориентировочный расчет валов.
курсовая работа [366,1 K], добавлен 07.04.2013Определение мощности двигателя и элементов исполнительного органа. Определение передаточного отношения редуктора. Расчет первой ступени планетарной прямозубой цилиндрической передачи. Определение геометрических размеров всех зубчатых колес первой ступени.
курсовая работа [1,7 M], добавлен 22.09.2010Определение мощности двигателя и элементов исполнительного органа: разрывного усилия, диаметра троса и барабана, общего передаточного отношения редуктора и разбивка его по ступеням. Расчет первой и второй ступени редуктора, его валов. Выбор подшипников.
курсовая работа [811,2 K], добавлен 17.10.2013Определение передаточного отношения и разбиение его по ступеням, окружных и угловых скоростей зубчатых колес и крутящих моментов на валах с учетом КПД. Материал и термообработка зубчатых колес. Кинематический и геометрический расчет зубчатой передачи.
курсовая работа [54,1 K], добавлен 09.08.2010Кинематический и силовой расчет привода. Определение клиноременной передачи. Расчет прямозубой и косозубой цилиндрической передачи редуктора. Эскизная компоновка редуктора. Конструирование валов редуктора и зубчатых колес. Смазывание узлов привода.
курсовая работа [2,6 M], добавлен 22.10.2011Кинематический расчет электромеханического привода. Определение требуемой мощности и выбор электродвигателя. Расчет тихоходной зубчатой цилиндрической передачи редуктора. Выбор материала и твердости колес. Расчет на прочность валов редуктора, подшипников.
курсовая работа [8,5 M], добавлен 09.10.2011Кинематический и силовой расчет привода. Расчет мощности электродвигателя. Определение общего передаточного числа привода и вращающих моментов. Выбор материала для изготовления зубчатых колес. Проектный расчет валов редуктора и шпоночного соединения.
курсовая работа [654,1 K], добавлен 07.06.2015