Расчет холодильника при овощехранилище вместимостью 2000 т

Расчетный режим холодильных установок. Расчет площадей, объемно-планировочное решение холодильника. Тепловой расчет холодильника и выбор системы охлаждения. Оценка и подпор компрессоров и теплообменных аппаратов. Автоматизация холодильной установки.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 09.01.2011
Размер файла 109,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Определяется площадь теплопередающей поверхности по формуле:

F=Qоб / k*?m, м2 (8.5)

где Qоб - суммарная тепловая нагрузка на оборудование, кВт

k - коэффициент теплопередачи воздухоохладителя, Вт(м2*к)

?m - средний температурный напор между температурной воздуха в камере и t0 кипения хладагента (для хладагентов 6-100С)

F=80096 / 23,3*10 = 343,76 м2

По таблице 5,16 (3) подбираем 10 воздухоохладителей марки ВОП-75 с площадью теплопередающей поверхности F=75м2

Для камер №1 и №2 выходит 5 воздухоохладителей и для камер №7 и №8 выходит тоже 5 воздухоохладителей.

Проверяется, достаточна ли объемная подача установленных вентиляторов:

Vв= Qоб / св (i1-i2), м3/с (8.6)

где св - плотность воздуха выходящего из воздухоохладителя, кг/ м3

i1- энтальпия входящего воздуха (при t=2 , i1=12)

i2- энтальпия выходящего воздуха (при t=0 , i2=8)

Vв=80 / 1,293 (12-8) = 15, 48 м3/с

Объемная суммарная подача со всех 10 воздухоохладителей (ВОП-75) составляет 16,2 м3/с , значит расход воздуха достаточен.

б) Рассчитывается воздухоохладители для камер хранения №3, №4 и №5, №6.

Определяется площадь теплопередающей поверхности воздухоохладителей.

F= 88250 / 23,3*10 = 378,75 м2

По таблице 5,16 (3) подбираем 10 тепловой поверхности по F=75м2 (с суммарной площадью 750 м2),

Nдв = 8,68 кВт, вместимостью по хладагенту 22 л.

Для камер №3 и №4 приходится 5 воздухоохладителей на камеры №5 и №6 тоже приходится 5 воздухоохладителей.

Проверяется, достаточна ли объемная подача установленных вентиляторов.

Vв= Qоб / св (i1-i2), м3/с (8.7)

где св - плотность воздуха выходящего из воздухоохладителя, кг /м2 (при t = -2, св= 1,303 кг/м2).

(i1-i2) - разность энтальпий входящего и выходящего воздуха воздухоохладителей, кДж/кг. По i-d диаграмме

при t=+10C , i1=10 кДж/кг;

при t= -20С, i2= 5,0 кДж /кг.

V= 88,25 / 1,303*(1050) = 13,54 м3/с

Каждый воздухоохладитель оснащен двумя вентиляторами, обеспечивающий необходимый расход воздуха. С суммарным расходом воздуха со всех 10 воздухоохладителей 16,2 м3/с.

9 РАСЧЁТ И ПОДБОР ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ

К вспомогательному оборудованию относятся: трубопроводы, различные ресиверы, маслоотделители, маслосборники, воздухоотделители и др. различные сосуды и аппараты.

9.1 Расчет и подбор трубопроводов

Диаметры трубопроводов холодильных установок рассчитываются, исходя из общего расхода среды, проходящей по трубопроводу, с принятой скоростью ее движения.

а) Определяется внутренний диаметр труб для камер №1,№2 и №7,№8, по формуле:

б = 4mэ , м. (9.1)

Пю

где m - расход хладагента через трубопровод, кг/с;

э - удельный объем хладагента, м3/кг;

ю - скорость движения хладагента по трубопроводу м/с (по табл. 49(1) с методики «расчет и подбор трубопроводов»).

Строится цикл в диаграмме i-lg P и определяется параметры точек.

lg , 3 2I 2

кПа +32

+18

4 -7 1 1I

i ,

кДж/кг

Рис. 5

Параметры точек, заносятся в таблицу 9.1.

Таблица 9.1

Наименование трубопроводов

э, м3

m, кг

Всасывающий

э 1= 0,06

1,22

Нагнетательный

э 2 = 0,024

1,22

Жидкостный

э 3= 0,001

1,22

Определяется диаметр всасывающего трубопровода:

бвс= 4*1,22*0,024 = 0,2928 = 78мм

3,14*15 47,1

Определяется диаметр нагнетательного трубопровода:

б наг = 4*1,22*0,001 = 0,11712 = 50мм

3,14*15 47,1

б ж-- = 4*1,22*0,001 = 0,00488 = 37,6мм

3,14*1,1 3,454

По таблице 48 (1), подбирается медные бесшовные трубы.

Таблица 9.2

Наименование труб

Dу, мм

DхS, мм

f, м2

э* 103, м3

Масса 1м,

кг

Всасывающий

80

89*3,5

0,2790

5,28

5,28

Нагнетающий

50

57*3,5

0,1790

1,96

4,62

Жидкостный

40

45*2,5

0,1413

1,26

2,62

б) Определяется внутренний диаметр труб для камер №3, №4 и №5, №6 по формуле:

б = 4*m* э , м. (9.2)

П*ю

Строится цикл в диаграмме i-lg Р и определяются параметры точек.

lg , 3 2I 2

кПа +32

4 -7 1 1I

i ,

кДж/кг

Рис. 6

Параметры точек, заносятся в таблицу 9.1.

Таблица 9.1

Наименование трубопроводов

э, м3

m, кг

Всасывающий

э 1= 0,75

0,99

Нагнетательный

э 2 = 0,024

0,99

Жидкостный

э 3= 0,001

0,99

Определяется диаметр всасывающего трубопровода:

бвс = 4*0,99*0,075 = 0,297 = 79 мм

3,14*15 47,1

Определяется диаметр нагнетательного трубопровода:

бнаг = 4*0,99*0,024 = 0,095 = 45мм

3,14*15 47,1

Определяется диаметр жидкостного трубопровода:

бжид = 4*0,99*0,001 = 0,00396 = 34мм

3,14*1,1 3,454

По таблице 48(1) , подбираются медные бесшовные трубы:

Таблица 9.2

Наименование

Труб

Dу,

мм

Dн *s,

мм

f,

м2

э* 103, м3

Масса 1м,

кг

Всасывающий

80

89*3,5

0,2790

5,28

5,28

Нагнетающий

50

57*3,5

0,1790

1,96

4,62

Жидкостный

40

45*2,5

0,1413

1,26

2,62

9.3 Расчет и подбор линейного ресивера

В без насосной, хладоновой, децентрализованной установке вместимость линейного горизонтального ресивера определяется по формуле:

Vл.р. = (1/2 …1/3) mg э3/ 0,8 м3/кг (9.3)

где (1/2… 1/3) mg - кол-во хладагента проходящего через ресивер, кг/ч; (1ч=60мин=3600с.)

э3 - удельный объем жидкости при tк , м3/кг.

а) Рассчитывается линейный горизонтальный ресивер для камер хранения №1,№2 и №7, №8.

Vл.р. = Ѕ *1,22*3600*0,001 /0,8 = 2,745 м3

Подбираются линейные ресиверы марки 0,75 РД вместимостью 0,77 м3 (общая вместимость всех ресиверов составляет 6,16 м3).

Для камер №1 и №2 приходятся 4 линейных ресивера и для камер №7 и №8 тоже 4 линейных ресивера.

б) Рассчитывается линейный горизонтальный ресивер для камер хранения овощей №3,№4 и №5,№6.

Vл.р. = Ѕ *3600*0,001/0,8 = 2,23м3

Подбираются 6 линейных ресивера марки 0,75 РД вместимостью 0,77м3 , m=340кг (общая вместимость всех 6-ти линейных ресиверов состоит 4,62 м3).

Для камер №3 и №4 приходится 3 линейных ресивера и для камер №7 и №8 тоже 3 линейных ресивера.

9.4 Подбор маслоотделителя

Маслоотделитель служит для улавливания масла, уносимого из компрессора вместе с парами хладона (R22).

Подбираем маслоотделители по диаметру нагнетаемого трубопровода компрессора. При температуре кипения хладона t0=-7 , 0С

Маслоотделитель (Dн=50) подбирается марки 50 МА (для 8 компрессоров 8 маслоотделителей).

10 АВТОМАТИЗАЦИЯ ХОЛОДИЛЬНОЙ УСТАНОВКИ

Работа холодильных машин и установок в автоматическом режиме - это одно из условий повышения эффективности и надежности эксплуатации холодильного оборудования и сокращения эксплуатационных расходов.

Автоматическое управление работой холодильных установок осуществляется посредством приборов автоматики, которые:

- регулируют количество поступающего в испаритель хладагента или хладоносителя;

- изменяют холодопроизводительность путем сокращения времени работы компрессора методом периодического его отключения и включения;

- отключают компрессор при создании аварийной ситуации.

Основные требования к автоматизации холодильной установки:

- обеспечение безопасной работы холодильной машины; поддержание соответствия между холодопроизводительностью и тепловой нагрузкой;

- стабилизация температуры промежуточного хладоносителя и охлаждаемой среды.

При выборе способов регулирования и средств контроля и управления необходимо учитывать особенности холодильной установки как объекта автоматизации.

Помещения, где установлены холодильные машины, относятся к взрывоопасным. Поэтому к ним предъявляют повышенные требования безопасности.

Резкие суточные и сезонные изменения тепловых нагрузок приводят к необходимости применения позиционного регулирования холодопроизводительности (включение и выключение компрессора). В небольших пределах холодопроизводительность можно регулировать с помощью дросселирования на всасывающем трубопроводе компрессора. При этом необходимо поддерживать уровень в ресивере подачи в в испаритель жидкого хладагента. Из-за взрывоопасности помещения для аварийной защиты компрессора отключается электродвигатель привода. Двигатель выключается при возникновении любого из следующих условий: понижении давления во всасывающей линии компрессора; повышении температуры или давления во всасывающей линии компрессора; нарушении подачи смазки; при отклонении уровня хладагента в испарителе, конденсаторе, ресивере или маслоотделителе.

При включении компрессора необходимо обеспечить защиту электродвигателя от перегрузки. Соединение нагнетательного трубопровода с всасывающим на время, необходимое для разгона электродвигателя до номинальной скорости вращения, является наиболее простым и надежным способом защиты электродвигателя компрессора.

Система сигнализации должна обеспечивать: подачу аварийного сигнала, т.е. зажигание табло с надписью «Авария» и включение красной лампочки и звонка при аварийной остановке компрессора; зажигание лампочки указывающей, какой из приборов защиты остановил компрессор, и «запоминание» этого сигнала, т.е. лампочка должна гореть при исчезновении опасного режима до момента устранения причины его возникновения.

Приборы и другие средства автоматизации располагаются по месту (на компрессорах, аппаратах и трубопроводах), на отдельных пультах управления и на главном щите управления.

Приборы дают сигналы о режиме работы на пульт и долее на главный щит, а с главного щита поступает команда на пуск и остановку электродвигателей.

11 ПОДБОР ПРИБОРОВ АВТОМАТИКИ

РDS - реле разности давлений всасывания и создаваемым компрессором. Двухблочное реле контролирует два давления, действующие не один микропереключатель. Прибор включает в себя узлы низкого и высокого давления. Тип реле Д220-11. Рабочая среда-хладон. Диапазон настройки прямого срабатывания ДНД 0,03-0,4 МПа, ДВД 0,7… 1,9 МПа. Диапазон зоны возврата: ДНД нижнее значение не более 0,04 МПа, вернее значение не менее 0,25 МПа. ДВД нерегулируемая, не более 2 МПа.

РDS - реле разности давления всасывания и нагнетания, предназначено для контроля и автоматической защиты компрессора от понижения разности давлений всасывания и нагнетания; Реле двухблочное, контролирует два давления действующие на один микропереключатель.

Тип реле Д-220-11, техническая характеристика которого приведена выше.

PS - реле давления, включает, отключает, сигнализирует. Предназначено для контроля и автоматической защиты конденсатора, когда давление воды выше допустимого предела, предусмотренного испытанием на прочность. Подбираем реле типа РД 1-01. рабочие среды: хладоны, воздух, вода, масло. Диапазон настроек: прямого срабатывания -0,03…+0,4 МПа, зоны возврата 0,04 МПа.

ТС - реле температуры для регулирования температуры объекта. Манометрическое, так как такое реле температуры получили наибольшее распространение. Оно предназначено для поддержания заданной температуры охлаждаемых объектов. Подбираем термореле типа ТР 1-02Х обыкновенное. Диапазон настроек: температуры срабатывания -20…+100С, зоны возврата 2,5…60С; длинной капилляра 0,6 или 3м; массой 0,8 кг.

PS - реле давления всасывания компрессора, предназначено для контроля и автоматической защиты, когда давление всасывания меньше расчетного. Подбираем реле низкого давления

типа РД-1-01 рабочей средой: хладон, воздух, масло, вода. Диапазон настроек: прямого срабатывания - 0,03…+0,4 МПа, зона возврата 0,04-0,25 МПа.

ТS - реле температуры, манометрическое, защищает компрессор от превышения верхнего предела температуры нагнетания. Подбираем реле типа ТР - ОМ 5-0,6. Диапазон настройки: температура срабатывания +55…+85оС, длиной капилляра 1,5; 2,5 или 4 м.

Р - прибор подсказывающий давление - манометр.

ТРВ - терморегулирующий вентиль, регулирует подачу холодильного агента в испаритель (воздухоохладитель), одновременно осуществляя дросселирование, т.е. понижает его давление и температуру. Подбираем ТРВ - 2 м.

СВ - соленоидный вентиль мембранный - автоматический запорный вентиль служащий для пропускания жидкостей (хладагента) по трубопроводам.

УС - электронное устройство, предназначенное для автоматического оттаивания испарителей (воздухоохладителей). Подбираем электронное устройство типа УЭ - 2, позволяющее автоматически оттаивать снеговую шубу с испарителя (ВО) и поддерживать заданную температуру в охлаждаемом объёме. Настройка температуры в охлаждаемом объёме от -35 до +15оС; периодичность сигнала оттаивания ВО - 4ч, 6ч, 8ч, 16ч, 24ч; длительность сигнала оттаивания ВО - 0,75; 1ч; 1,5ч; 2ч; 3ч.

12 ИЗДЕРЖКИ ПРОИЗВОДСТВА И ОСНОВНЫЕ ПОКАЗАТЕЛИ РАБОТЫ ПРЕДПРИЯТИЯ

В этом разделе определяется цеховая себестоимость единицы холода. Для проектируемых предприятий она является плановой калькуляцией, определяемая как сумма затрат по статьям перечисленным в таблице12.1.

На действующем предприятии составляется отчетная калькуляция по фактическим затратам, сравнение которой с плановой позволяет установить экономию или перерасход по отдельным статьям и наметить организационно - технические мероприятия по снижению себестоимости.

Таблица 12.1

Статьи затрат

ед. изм.

Цена за

ед изм.

Кол-во

Сумма

На всю

На ед-цу

На всю

На ед-цу

Электроэнергия силовая

кВт*ч/год

0,65

1268400

0,5

824460

0,33

Вода производств.

м3/год

0,4

505152

0,2

202060

0,08

Сырье и основные материалы

кг/год

3,6

1,5

2108

559871

0,001

0,22

7588,8

8398080

0,003

3,33

Зар/плата производств-ых рабочих

Руб/год

--

--

--

436897,7

0,17

Начисление на зар/плату

Руб/год

--

--

--

20315,7

0,01

Цеховые расходы

Руб

--

--

--

685200

0,27

Итого цеховая себестоимость

Руб/лв

--

--

--

10574602

4,193

12.1 Определение количества выработанного холода

Определение выработанного холода в условных единицах в рабочих условиях.

Qраб = К *Qо *n/ 4,187 , кВт

где К - коэффициент, учитывающий потери в трубопроводах и аппаратах; принимают в зависимости от температуры кипения хладагента К=1,05 при t=0 С,

Qо - холодопроизводительность компрессоров кВт,

n - время работы 1-го компрессора, кс

Qраб = 1,05х 680х19400/4,187= 3315061 кВт

Приведенная выработка холода по всему холодильнику определяется по формуле:

Q = Qраб*Кн , кВт

где Кн - коэффициент перевода, принимают в зависимости от температуры кипения хладагента при t=-10С, Кн= 0,76

Q = 3315061 х 0,76= 2519446,3 кВт,

12.2 Определение затрат на электроэнергию

По данной статье рассчитывают затраты на силовую энергию для привода компрессоров, воздухоохладителей, а так же насосов.

Годовое потребление электроэнергии:

W= Nэ*Кс*n, (12.1)

где Nэ - номинальная мощность установленного электродвигателя, кВт;

Кс - коэф. Спроса = 0,7 ;

n - время работы оборудования, ч;

Годовое потребление электроэнергии компрессорами:

Wкм= 220*0,7*5400=831600 кВт*ч/ год.

Годовое потребление Эл/энергии воздухоохладителями:

Wкм= 173,6*0,7*3000= 364560 кВт*ч/ год

Годовое потребление Эл/энергии водяными насосами:

Wн.вод = 34,4*0,7*3000=72240 кВт*ч/ год

Общее годовое потребление Эл/энергии:

W= Wкм+ Wн.вод, кВт*ч/ год (12.2)

W=831600+364560+72240=1268400 кВт*ч/ год

Общее годовое потребление эл/энергии на единицу холода определяется по формуле:

Wед.х= УW/ Q, кВт*ч/ год. (12.3)

Wед.х= 1268400/ 2519446,3 = 0,5 кВт*ч/ год.

Стоимость эл/энергии определяется по форуле:

Цэл= W*0,65 (12.4)

Цэл= 1268400*0,65=824460

Стоимость электроэнергии на единицу холода определяется по формуле:

Цэл.ед.х= 824460/ 2519446,3=0,33 кВт*ч/ год.

12.3 Определение затрат на воду

Годовое потребление воды определяется по формуле:

Gвд= qвд*Q0*Z*n/ 4.187 , м3/ год. (12.5)

где qвд - удельный расход воды;

Q0 - холодопроизводительность компрессора в рабочих условиях при определенной температуре кипения кВт,

Z - количество, одновременно работающих компрессоров при данной температуре кипения;

n - время работы компрессоров в год, кс

Gвд= 0,02*680,8 19440/ 4,187= 505152 м3/ год.

Стоимость воды определяется по формуле:

Gвд = 505152/ 2519446,3 = 0,2 м3/ год.

Стоимость воды определяется по формуле:

Цвд= Gвд*0,4= 202060 руб/ ч

Стоимость воды нп ед. холода определяется:

Цэл.ед.х= 202060/ 2519446,3= 0,08 руб/ ч.

12.4 Определение затрат на пополнение системы хладагентом

Эти расходы находятся в прямой зависимости от установленной холодопроизводственности компрессоров.

Годовой расход на пополнение системы хладагентом определяется по формуле:

Gа = Нр* УQ0 ,кг/год. (12.6)

где Нр - норма расхода хладона на пополнение системы на 1 кВт.

Gа= 3.1*680=2108 кг/год

Годовой расход хладона на пополнение системы на единицу холода определяется:

Ga ед.х =2108 кг/2519446,3 = 0,001 кг/год.

Стоимость хладона на пополнение определяется по формуле:

Ца = 3,6 * Ga, руб/ год. (12.7)

Ца = 3,6*2108 = 7588,8руб/ год.

Цена (R22) на единицу холода определяется по формуле:

Ца= 7508,8/ 2519446,3 = 0,003 руб/ч.

12.5 Определение затрат на смазочные масла для холодильных машин

Годовую потребность в смазочном масле на восполнение унос масла из компрессоров можно определить по формуле:

М= У(qм*Z*n) n/ n1 , кг/год. (12.8)

где qм - расход масла на один цилиндр;

Z - количество цилиндров;

n -количество часов работы компрессора в год;

n1 - нормативное время, через которое масло должно сменяться .

М= У(0,15*64*5400)5400/ 500 = 559872 кг/год

Годовая потребность в смазочном масле на единицу холода определяется:

Мед.хол= 559872/ 2519446,3 = 0,22 кг/год

Стоимость смазочного масло-восполнение уноса, определяется по формуле:

Цм= 15 М , руб/ год (12.9)

где 15 - стоимость 1 кг масла

Цм= 15*559872 = 8398080 руб/ год

Стоимость смазочного масла на одну единицу холодильника определяется:

Цм.ед.хол= 8398080/ 2519446,3= 3,33 руб/ год.

12.6 Заработная плата производственного персонала

К производственному персоналу относятся начальник цеха, машинисты, помощники машинистов слесаря по ремонту оборудования (КиПиА).

Заработная плата начальника цеха рассчитывается по высшей часовой тарифной ставки . заработную плату производственных рабочих рассчитывают по каждому разряду на планируемый период с учетом премии за выполнение основных показателей плана. Рассчитанная для каждой категории производственных рабочих заработная плата суммируется.

Зм= 1,075*Т фn k , руб/ год (12.10)

где Т - часовая тарифная ставка машиниста, руб.

ф - число часов работы за планируемый год, ч

n - число рабочих имеющий данный разряд, чел.

k - коэффициент, учитывающий премии за выполнение плановых показателей ; к=1,2

Заработная плата начальника цеха:

Знач.ц= 97446,8*0,075=7308,5 руб

Знач. ц= 97446,8+7308,5=104755,3 руб

Заработанная плата нач. цеха ед, холода определяется:

Знач.ц.ед. хол = 104755,3+2519446,3=0,042 руб/кВт

Численность машинистов зависит от степени автоматизации установки, количеств обслуживаемых компрессоров и их холодопроизводительность, для обслуживания компрессоров с комплексной автоматизацией n=2 чел(5р, Т=12,6 руб).

Заработная плата старшего машиниста:

Зст.м=1,075*12,6*1957*2*1,2=63618,156 руб

Заработная плата (помощников старших машинистов) машинистов:

Змаш= 1,075*11,153*1957*4*1,2=112624,3 руб.

Заработная плата слесарей:

Численность слесарей принимают в зависимости от количества компрессоров, 4 слесаря (4р, Т=9,862 руб)

Зсл=1,075*9,862*1957*4*1,2=99588 руб.

Заработная плата слесарей КИПиА определяется: Зслес.кип=1,075*11,153*1957*2*1,2=56312 руб

Общая заработная плата составляет:

Зобщ = 104755,3+63618,156+112624,3+99588+56312= =436897,7 руб

Общая заработная плата на ед. холода определяется:

Зобщ.ед.х= 436897,7/ 2519446,3 = 0,17 руб/кВт

Начисление на заработную плату принимается в размере 4,65% к основной и дополнительной плате.

Нз= З*4,65%*436897,7*0,0465=20315,7 руб

Начисление на заработную плату в единицу холода определяется:

Нз.ед.х = 20315,7/2519446,3=0,01 руб/кВт

Цеховые расходы.

На цеховые расходы составляют смету по основным статьям расхода, форма которой приведена в таблице.

Цеховые расходы

Статьи расхода

Единицы измерения

Сумма

На ед холода

Заработанная плата цехового персонола

Руб/год

436897,7

0,17

Начисления на заработанную плату 4,65%

Руб/год

20315,7

0,01

Амортизация оборудования

Руб/год

381000

0,15

Текущий ремонт

Руб/год

190500

0,075

Охрана труда

Руб/год

36000

0,01

Содержание зданий и оборудования

Руб/год

126000

0,05

Износ малоценного и быстро изнашивающего инвентаря

Руб/год

32700

0, 01

Прочие расходы

Руб/год

5712

0,01

Итого цеховые расходы

Руб/год

1148125,4

0,45

Амортизационные отчисления составляют от 8 до 11,5% от стоимости оборудования и монтажа. Стоимость монтажных работ принимаются в размере 20%от стоимости оборудования. Кроме того, должны быть учтены расходы на упаковку и транспортирование оборудования в размере 7% от его стоимости.

А=(1,07Цоб+Цмонт)m (12.11)

где А - амортизаторные отчисления, руб;

1,07 - коэффициент, учитывающий расходы на упаковке и транспортирование оборудования;

Цоб -суммарная стоимость оборудования (300000 руб.)

Цмонт - стоимость монтажных работ составляет 20% от стоимости оборудования

m - норма амортизации отчислений (m=от 0,8 до 0,115).

А= (1,07*3000000+0,2*3000000)0,1= 381000 руб.

Амортизация оборудования на единицу холода:

Аед.х.= 381000/2519446,3= 0,15 руб./кВт

Расходы на текущий ремонт (Трем.) оборудования принемают до 50% от амортизационных отчислений. Расходы по охране труда (ОТед.) принимают из расчета 3000 руб. в год на одного работающего. Расходы на содержание зданий, сооружений, оборудования (Сз.о.) принимают до 1,5% от стоимости основных фондов.

Стоимость 1м3 здания с оборудованием (Сз...) дана в приложении 3,3[5].

Расходы на износ малоценного и быстроизнашивающегося инвентаря (И) должны составлять не более 10% от амортизационных отчислений. На прочие расходы (Пр) предусматривается до 0,5% от общей суммы цеховых расходов.

Суммарный расход по каждой статье делится на выработку холода. Полученные расходы на единицу холода складываются и составляют себестоимость производства единицы холода.

Текущий ремонт определяется по формуле:

Трем.= А*0,5 руб/ год (12.12)

Трем=381000*0,5=190500 руб/ год

Текущий ремонт на единицу холода определяется:

Трем.ед.х= Трем/ Q, руб/ кВт (12.13)

Трем.ед.х= 190500/ 2519446,3= 0,075 руб/ кВт

Охрана труда определяется:

От=3000*12= 36000 руб.

Охрана труда на единицу холода:

ОТед.х= ОТ/ Q, руб/кВт (12.14)

ОТед.х= 36000/ 2519446,3 = 0,01 руб/кВт

Расходы на содержание зданий и оборудования принимают 1,5% от стоимости основных фондов,

Сз.о.= 0,015* ОФ, руб (12.15)

где ОФ - стоимость основных фондов, руб

ОФ= Сз+Со., руб (12.16)

где Сз - стоимость здания, руб

Со - стоимость оборудования, руб

Сз = 3500*Fстр (12.16)

где Fстр - строительная площадь камер, м2

Сз=2500*2160=5400000руб

ОФ= 5400000+3000000=8400000

Сз.о= 0,015*8400000=126000 руб/год

Содержание здание и оборудования на единицу холода:

Сз.о= Сз.о/ Q , руб (12.16)

Сз.о= 126000/2519446,3= 0,05руб/ кВт

Износ малоценного и изнашивающегося инвентаря составляет 10% от амортизации оборудования:

И= 0,1*А ,руб (12.16)

И= 0,1* 327000=32700 руб

Износ инвентаря на единицу холода:

Иед.х= И/ Q , руб/ кВт (12.16)

Иед.х = 32700/ 2519446,3= 0,01 руб/ кВт

Цеховые расходы вычисляются по формуле:

Цр= З+Нз+А+Трем+ОТ+Сз,о+И , руб (12.16)

Цр= 436897,7+20315,7+381000+190500+36000+ +126000+32700= 1191013,4 руб/год

Прочие расходы определяются по формуле:

Пр= 0,005 *Цр (12.16)

Пр=0,005*1191013,4 = 5955 руб/ год

Прочие расходы на единицу холода:

Пр.ед.х= Пр/ Q (12.16)

П

р.ед.х=5955/ 2519446,3 = 0,01 руб/ кВт

Общецеховые расходы составляют с прочими расходами:

Цр.общ= Цр+Пр (12.16)

Цр.общ = 1191013,4 +5955=1196968,4 руб

Общецеховые расходы на единицу холода:

Цр.общ.ед.х= 1196968,4 / 2519446,3= 0,47 руб/ кВт

Определется срок окупаемости:

То=Кв/ А (12.16)

То= 3000000/ 381000= 7,8 год.

Проектируемый холодильник будет работать малоэффективно, так как затраты на производство холода составляют 1196968,4 рублей. Срок окупаемости капитальных вложений составят 7,8 лет.

13 ОХРАНА ТРУДА И ОКРУЖАЮЩЕЙ СРЕДЫ

13.1 Охрана труда

Охрана труда - система правовых, технических и санитарных норм, обеспечивающих безопасные для жизни и здоровья трудящихся условия выполнения работы. Администрация обязана внедрять современные средства, технику безопасности, предупреждающие производственные средства, технику безопасности, предупреждающие производственный травматизм, и обеспечивать санитарно гигиенические условия, предотвращающие возникновения профессиональных заболеваний рабочих и служащих. В необходимых случаях бесплатно выдаются спецодежда и другие средства индивидуальной защиты, молоко лечебно-профилактическое питание.

Администрация предприятия обязана издавать безопасные условия труда и осуществлять постоянный контроль за соблюдением рабочими всех требований инструкций по охране труда производственной санитарии и личной гигиены.

Производственная санитария - это система организационных мероприятий и технических средств, предотвращающих или уменьшающих воздействие на работающих вредных производственных факторов.

Воздействие производственной среды на организм человека обуславливается физическими, химическими и биологическими факторами.

Физические факторы включают в себя относительную влажность и температуру, движение и барометрическое давление воздуха, радиоактивное и тепловое излечение, шум и вибрацию.

К химическим факторам относятся загазованность воздуха ядовитыми газами и токсичной пылью, неприятные запахи, агрессивные кислоты и щелочи.

Создание благоприятных условий метеорологических на рабочих местах во многом зависит от рационального устройства систем вентиляции, кондиционирования воздуха и отопление. По характеру действия подразделяют на приточную, вытяжную и приточно-вытяжную.

Приточная вентиляция применяется при необходимости замены воздуха в помещении чистым наружным воздухом, а также при необходимости исключить попадание загрязненного воздуха из других помещений.

Приемные устройства для забора наружного воздуха (проемы в стенах, воздухозаборные шахты) размещают в наименее загрязненной зоне производственной территории. Чистота подаваемого в помещение воздуха определяется требованием технологического процесса и содержанием в нем вредных веществ, не более 30%, от предельно допустимой концентрации для рабочей зоны.

Очистка наружного воздуха от пыли производится с помощью масляных, волокнистых, губчатых и электрических фильтров, Кратность вентиляции, а=3.

Вытяжная вентиляция предназначена для удаления из помещений загрязненного воздуха, избыточных тепло и влаго выделений. Выброс в атмосферу воздуха, содержащегося вредные вещества в воздухе, поступающим в помещения через проемы проточной вентиляции, не превышали 30% предельно допустимых концентраций вредных веществ в рабочей зоне. При определении мест установки воздухоприемников вытяжной вентиляции учитывают плотность вредных веществ и расположение источников избыточного тепла и влаги.

Для очистки загрязненного воздуха от пыли, дыма, тумана предусматривают гравитационные пылеуловители, инерционные пылеуловители сухого и мокрого типов, электрические фильтры и тканевые пылеуловители:

Кратность вентиляции, а=3.

Для помещений, в которых возможно внезапное выделение больших количеств вредных или взрывоопасных веществ предусматривают аварийную вытяжную вентиляцию.

Вытяжной воздуховод размещают на расстоянии 1м от пола. Кратность вентиляции, а=5.

В помещениях, где выделяются пожаро и взрывоопасные пары и газы, а так же пары и газы вредных веществ 1-3классы опасности производительность вытяжной вентиляции должна быть больше производительности приточной.

На холодильном транспорте и в малых холодильных установках преобладающим хладагентом является Хладон22 (R22) это тяжелый бесцветный газ с очень слабым специфическим запахом, который ощущается при содержании хладона в воздухе не более 20% от объема. Предельно допустимая концентрация паров R22 в воздухе производственных посещений равна 3000 мг\м3 . уровень шума не должен превышать 80 дбл.

Противохладоновая аптечка состоит из: нашатырного спирта, баллона с кислородной, спирта медицинского, стерильно перевязочных материалов и кровоостанавливающих средств, мази Вишневского, двууглекислой соды, деревянных лопаток для наложения мази, Валериановых каплей.

В посещениях рядом с установкой в застекленном шкафу должно находиться не менее 2-х пар перчаток и один изолирующий противогаз марки ИП-46 , защитные очки, аптечка.

Определение имеет утечки хладона.

Для определения применяют следующие основные способы: обмыливание, с помощью галоидных ламп, галоидным течеискателем.

Наиболее часто определение мест утечки хладона осуществляют с помощью пропановых галоидных ламп. Метод проверки основан на изменении цвета пламени сгораемого топлива. При отсутствии в воздухе паров хладона пламя отрегулированной лампы имеет светло-голубой цвет.

Нельзя курить рядом с установками.

13.2 Охрана окружающей среды

Охрана окружающей среды правовая система государственных мер, обеспечивающая рациональное использование, сокращение и воспроизводство природных ресурсов.

Охрана окружающей среды тесно связана с природопользованием.

Природопользование - общественно-производственная деятельность, направленная на удовлетворение материальных и культурных потребностей общества путем использования различных видов природных условий.

Интенсивное развитие народного хозяйства обострило проблему ораны

окружающей среды от промышленных загрязнений является частью социальной и государственной задачи охраны природы, включающей комплекс взаимосвязанных мероприятий.

Охрана природной среды для предприятий промышленности актуальна в связи с интенсификацией производства, наращиванием объемов выпуска продукции. Защита окружающей природной среды не предприятиях промышленности состоит из ряда законодательных актов и организационных мероприятий, организация обследования предприятий и выявление источников загрязнения, обучения в области охраны природы, планировочные мероприятия, а эффективная эксплуатация очистительных сооружений, рациональное использование воды.

Компрессоры работающие на хладагентах хлорфторуглеродах (R11, R12, R13, R115, R502 и другие) создают проблему, так как эти хладагенты разрушают озоновый слой земли, все это создает проблему их замены переходными (временными) хладагентами (R22, R123, R124, R141 b, R142 b) с низким потенциалом разрушения озонового слоя применение которых в соответствии с международным соглашением (Монреальский протокол 1987 года) возможно до 2030 года, а также озонобезопасными однокомпонентными хладагентами (R23, R32, R125, R134 a) и их смесями или природными веществами (R717, R744, R290, R600, R600 a).

Решение этой проблемы должно осуществляться с решением таких проблем как снижение затрат на производство, надежность, безопасность.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Дубцов Г.Г. Товароведение пищевых продуктов» - М. Мастерство: Высшая школа, 2001.

2. Евдокимова Г.М., Слевцов Л.И. «Автоматизация производственных процессов в мясной и молочной промышленности, Москва. 2000.

3. Колач С.Т. «Холодильное оборудование для предприятий торговли и общественного питания.

4. Курылев С.Е., Оносовский В.В., Румянцев Ю.Д. «Холодильные установки» Политехника. Санкт-Петербург, 2000.

5. Лашутина Н.Г. «Холодильная техника в мясной и молочной промышленности». - 2-е издание - М.: Агропромиздат, 1989

1. Матвиенко И.В. «Основы холодильной техники и её применение в пищевой промышленности». Издательство ВГУ, Воронеж, 1976, с.168

2. Михайлов А.К. «Насосы холодильной техники»: Учебное пособие для вузов. - М.: Пищевая промышленность, 1979. - 240 с.

3. Михайлушкин А. И., Шлико П. Д. «Экономика» Москва, Высшая школа, 2000.

4. Свердлов Г.З. «Курсовое и дипломное проектирование холодильных установок и систем кондиционирования воздуха». - 2-е издание. Агропромиздат - М.: 1989.- 223 с.

5. Улейский Н. Т., Улейская Р.Н. «Холодильное оборудование» Ростов, на-Дону «Феникс» 2000.

6. Явнель Б.К. «Курсовое и дипломное проектирование холодильных установок и систем кондиционирования воздуха». - 3-е издание, - М.: Агропромиздат, 1989.

ПРИЛОЖЕНИЕ

ИДИВИДУАЛЬНОЕ ЗАДАНИЕ

УСТРОЙСТВА ДЛЯ ОХЛАЖДЕНИЯ ОБОРОТНОЙ ВОДЫ

Стоимость охлаждающей воды является одной из основных затрат при эксплуатации холодильной установки. Сократить расход воды позволяет повторное её использование после охлаждения. На холодильных установках применяют следующие типы охлаждающих устройств для воды: брызгательные бассейны, открытые градирни - брызгательные и капельные, вентиляторные градирни - брызгательные пленочные и капельные

Брызгательные бассейны. Такие бассейны представляют собой искусственные пруды, над поверхностью которых разбрызгивается воды с помощью форсунок, что увеличивает интенсивность охлаждения. Под трубами с форсунками располагается поддон из дерева или бетона высотой 0,5 - 1,0 м в виде прямоугольника. Тепловая вода подается в коллектор откуда далее вода попадает в распределительные трубы уложенные с уклоном 1о С в сторону движения воды.

Брызгательные бассейн размещают на открытом месте, на уровне земли, над конденсаторами или на крышке машинного отделения. Часто они компонуются с оросительными конденсаторами, и располагается над ними. Такие бассейны применяются в холодильных установках любой производительности, но чаще при объёмном расходе циркулирующей воды выше 100 м3/ч.

Открытые градирни. Для небольших и средних установок применяют открытые брызгательные градирни. Градирни представляют собой открытый бассейн, ограждённый жалюзийными решетками. Форсунки размешаются в верхней части на высоте 2-4 м. интенсивность брызгательных градирен выше, чем брызгательных бассейнов, так как разбрызгиваемая вода находится дольше в воздухе. Производительность этих градирен 0,3-100 кг/ охлажденной воды.

Для крупных установок с большим количеством циркулирующей воды целесообразно применять открытую капельную градирню - башню высотой 8-12 м, окруженную жалюзийной решеткой. Производительность открытых капельных градирен 1-400 кг/с охлаждаемой воды.

Вентиляторные градирни. Применяются в хладоновых установках любой производительности. Они значительно компактнее без вентиляторных. И их работа не зависит от ветра, так как процесс испарения воды в них интенсифицируется вентилятором. Такие градирни устанавливаются на крыше здания. Один из распространенных типов вентиляторов градирен пленочные. Вентиляторы могут быть отсасывающие и нагнетательные. Недостаток вентиляторной градирни повышение эксплуатационных расходов, связанные с расходами с электроэнергии на работу вентиляторов и их обслуживания.

Градирни пленочные вентиляторные марки ГПВ - предназначены для холодильных установок холодопроизводительностью до 1000 кВт.

Для крупных и средних холодильных установок выпускается вентиляторные секционные градирни. Градирни выполняют с отсасывающими и нагнетающими вентиляторами.

«Основные технические данные и удельные параметры охлаждающих устройств для воды, представлены в таблицах 25,26,27 /1/».


Подобные документы

  • Описание конструкции бытового холодильника. Расчет теплопритоков в шкаф. Тепловой расчет холодильной машины. Теплоприток при открывании двери оборудования. Расчет поршневого компрессора и теплообменных аппаратов. Обоснование выбора основных материалов.

    курсовая работа [514,7 K], добавлен 14.12.2012

  • Определение вместимости холодильника, расчет его площадей. Необходимая толщина теплоизоляции. Конструкции ограждений холодильника. Теплоприток через ограждения. Продолжительность холодильной обработки продукта. Расчет и подбор воздухоохладителей.

    курсовая работа [104,1 K], добавлен 09.04.2012

  • Общая характеристика и принцип работы холодильной установки молочного завода, ее технико-экономическое обоснование. Методика расчета строительной площади холодильника. Тепловой расчет принятого холодильника. Расчет и подбор камерного оборудования.

    курсовая работа [94,0 K], добавлен 03.06.2010

  • Проектный расчет воздушного холодильника горизонтального типа. Использование низкопотенциальных вторичных энергоресурсов. Определение тепловой нагрузки холодильника, массового и объемного расхода воздуха. Тепловой и экзегетический балансы холодильника.

    курсовая работа [719,0 K], добавлен 21.06.2010

  • Описание конструкции двухкамерного компрессионного холодильника. Теплопритоки в шкаф холодильника. Тепловой расчет холодильной машины. Обоснование выбора основных материалов. Расчет поршневого компрессора, теплообменных аппаратов, капиллярной трубки.

    курсовая работа [1,1 M], добавлен 07.08.2013

  • Принцип действия холодильника, процесс охлаждения. Классификация бытовых холодильников, основные структурные блоки. Расчет холодильного цикла, испарителя, конденсатора и тепловой нагрузки бытового компрессионного холодильника с электромагнитным клапаном.

    курсовая работа [1,3 M], добавлен 23.03.2012

  • Техническая характеристика технологического оборудования, потребляющего холод. Расчет числа строительных прямоугольников камер хранения, толщины теплоизоляционного слоя. Тепловой расчет камеры холодильника. Выбор и обоснованные системы охлаждения.

    курсовая работа [118,4 K], добавлен 11.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.