Оптимизация режимов резания на фрезерном станке
Обработка детали на вертикально-фрезерном станке 6Р12 концевой фрезой с цилиндрическим хвостовиком. Методы оптимизации процесса резания с учетом ограничения по периоду стойкости инструмента, кинематике и мощности привода главного движения станка.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 19.07.2009 |
Размер файла | 146,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2
Тольяттинский Государственный Университет
Кафедра “Технология машиностроения”
Курсовая работа
по дисциплине
“Математическое моделирование"
Студент: Комарова И.О.
Группа: М401
Преподаватель: Бобровский А.В.
Тольятти, 2005
Оптимизация режимов резания
Обработка детали ведется на вертикально-фрезерном станке 6Р12 концевой фрезой с цилиндрическим хвостовиком ГОСТ 17025-71.
Диаметр фрезы D = 20 мм; количество зубьев z = 6; материал инструмента Р6М5; период стойкости инструмента [Т] = 80 мин; глубина фрезерования t = 20 мм; ширина фрезерования В = 20 мм; рабочий ход Lрх = 70 мм; материал заготовки ШХ15; длина заготовки L = 60 мм; шероховатость поверхности Ra 6,3; частота вращения шпинделя станка n = 31,5…1600 об/мин; скорость продольных подач Sпр = 25…1250 мм/мин; мощность электродвигателя Nэ = 7,5 кВт.
Необходимо оптимизировать процесс резания с учетом следующих ограничений:
1) ограничение по кинематике станка;
2) ограничение по периоду стойкости инструмента;
3) ограничение по мощности привода главного движения станка.
Эскиз обработки:
1. Графический метод
1) ограничение по кинематике станка
а)
; ;
; ;
б)
; ;
;
2) ограничение по периоду стойкости инструмента
;
;
;
;
;
;
; .
3) ограничение по мощности главного движения станка
;
;
;
;
; ; ;
Выпишем все ограничения, а затем внесем их на один график.
Критерий оптимальности - целевая функция:
Придаем любое значение z и строим две прямые, касающиеся области оптимальных режимов резания в двух крайних ее точках. Таким образом, мы нашли точки А и В.
Найдем координаты точки А. Для этого необходимо решить систему уравнений:
;
;
Подставим координаты точки А в уравнение целевой функции:
Найдем координаты точки В. Для этого необходимо решить систему уравнений:
;
;
Подставим координаты точки В в уравнение целевой функции:
Сравним значения целевой функции для точек А и В:
Значит, оптимальной точкой резания является точка А (0,296; - 0,494).
Определим оптимальные значения режимов резания:
V = 10x1 = 100,296 = 1,977 м/мин;
Sz = 10x2 = 10-0,494 = 0,321 мм/зуб;
об/мин;
мм/мин.
2. Симплекс-метод
Решить систему уравнений:
Найти значения, при которых целевая функция
.
Приведем все знаки к одному направлению:
Для перехода от системы неравенств, вводим в систему уравнений единичную матрицу. Расширенная форма записи:
;
.
Находим расширенную матрицу, матрицу свободных членов и матрицу коэффициентов при базисных переменных:
.
Выбираем исходный базис. Запишем матрицу коэффициентов при базисных переменных:
Найдем определитель матрицы коэффициентов при базисных переменных:
Находим союзную матрицу:
; |
; |
; |
|
; |
; |
; |
|
; |
; |
. |
Находим транспонированную матрицу:
Находим обратную матрицу:
Находим решение исходного базиса:
;
.
Базисное решение является допустимым, т.к все его значения положительные.
Вычислим симплекс-разности для всех переменных, не вошедших в базис:
;
Симплекс разности отрицательны, следовательно, найдено оптимальное решение: Вывод: результаты, полученные графическим и симплекс-методом совпали, значит задача решена правильно.
3. Симплекс-таблицы. Решить систему уравнений:
Найти значения, при которых целевая функция
.
Приведем все знаки к одному направлению:
Для перехода от системы неравенств, вводим в систему уравнений единичную матрицу. Расширенная форма записи:
; .
Приведем систему уравнений к виду, где выделены базисные переменные:
По последней записи системы уравнений и целевой функции построим таблицу 1.
После нахождения разрешающего элемента в таблице 1, переходим к заполнению таблицы 2. После построения таблицы 2 в последней строке имеется положительный элемент, значит оптимальное решение не найдено.
Определяем разрешающий элемент в таблице 2 и переходим к заполнению таблицы 3.
Таблица 3.
Таблица 1 |
Таблица 2 |
Таблица 3 |
||||||||||||
СН БН |
СЧ |
х1 |
х2 |
СН БН |
СЧ |
x4 |
x2 |
СН БН |
СЧ |
x4 |
x3 |
|||
x3 |
-0,296 |
-1 |
1 |
x3 |
0,356 |
1 |
0,72 |
x2 |
0,494 |
1,388 |
1,388 |
|||
x4 |
0,652 |
1 |
0,72 |
x1 |
0,652 |
1 |
0,72 |
x1 |
0,296 |
0 |
-1 |
|||
x5 |
1,117 |
1 |
1 |
x5 |
0,465 |
-1 |
0,28 |
x5 |
0,327 |
-1,388 |
-0,388 |
|||
zmin |
-0,135 |
1 |
1 |
zmin |
-0,787 |
-1 |
0,28 |
zmin |
-0,925 |
-1,388 |
-0,388 |
|||
В таблице 3 все элементы последней строки отрицательны, значит оптимальное решение найдено:
.
Вывод: результаты, полученные графическим методом и методом симплекс-таблиц совпали, значит, задача решена правильно.
Подобные документы
Процесс торцевого фрезерования на вертикально-фрезерном станке, оптимальные значения подачи, скорости резания. Ограничения по кинематике станка, стойкости инструмента, мощности привода его главного движения. Целевая функция - производительность обработки.
контрольная работа [134,0 K], добавлен 24.05.2012Исследование методов оптимизации процесса резания с учетом ограничения по кинематике и мощности привода главного движения станка, по периоду стойкости инструмента. Определение скорости, подачи резания и мощности фрезерования плоскости торцевой фрезой.
контрольная работа [435,6 K], добавлен 24.05.2012Назначение и типы фрезерных станков. Движения в вертикально-фрезерном станке. Предельные частоты вращения шпинделя. Эффективная мощность станка. Состояние поверхности заготовки. Построение структурной сетки и графика частот вращения. Расчет чисел зубьев.
курсовая работа [141,0 K], добавлен 25.03.2012Обработка детали на токарно-винторезном станке. Выбор типа, геометрии инструмента для резания металла, расчет наибольшей технологической подачи. Скорость резания и назначение числа оборотов. Проверка по мощности станка. Мощность, затрачиваемая на резание.
контрольная работа [239,2 K], добавлен 24.11.2012Параметры режима резания металлов. Влияние скорости и глубины резания на стойкость и износ инструмента. Обработка шейки вала на токарно-винторезном станке. Сверление отверстия на вертикально-сверлильном станке. Особенности шлифования и фрезерования.
курсовая работа [1,5 M], добавлен 27.02.2015Методика обучения школьников технологиям обработки древесины. Разработка методического пособия для изучения технологии обработки древесины на вертикально-фрезерном станке. Обучение школьников на вертикально-фрезерном станке. Планы проведения уроков.
курсовая работа [36,6 K], добавлен 05.12.2008Назначение режима резания при сверлении, зенкеровании и развертывании. Изучение особенностей фрезерования на консольно-фрезерном станке заготовки. Выполнение эскизов обработки; выбор инструментов. Расчет режима резания при точении аналитическим способом.
контрольная работа [263,8 K], добавлен 09.01.2016Анализ конструкции станка. Кинематические и энергетические показатели процесса резания. Проверка геометрической точности механизма резания. Операция подготовки инструмента: плющение и формование зубьев пил. Квалификационная характеристика станочника.
курсовая работа [1,0 M], добавлен 19.01.2016Определение технических параметров токарного гидрокопировального станка модели 1722. Методы образования производящих линий при обработке на данном станке. Схема рабочей зоны станка. Расчет направляющих и режимов резания. Разработка смазочной системы.
курсовая работа [2,5 M], добавлен 16.01.2015Особенности устройства и технологические возможности станка. Технологические возможности и режимы резания на станке. Разработка структурной формулы привода главного движения. Геометрический и проверочный расчет зубчатых передач по контактным напряжениям.
курсовая работа [1,5 M], добавлен 02.02.2022