Простые числа в природе и их использование человеком

Первая таблица простых чисел, составленная математиком Эратосфеном. Периодические цикады как род цикад с 13- и 17-летними жизненными циклами, распространенных в Северной Америки. Принцип действия кредитной карты. Закономерности и свойства простых чисел.

Рубрика Математика
Вид научная работа
Язык русский
Дата добавления 28.01.2014
Размер файла 25,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа № 3

с углубленным изучением отдельных предметов городского округа Самара

имени Вадима Фадеева

VII общешкольная научно-практическая конференция «Интеллект - 21 век»

Учебно-исследовательская работа

Простые числа в природе и их использование человеком

Выполнили:

Арабина Софья, Карпова Арина

ученицы 7 В класса

Руководитель:

Драчева Г.Н.

учитель математики

Самара 2013

Введение

Актуальность исследования

Простые числа с давних времен привлекают внимание математиков. Они обладают необычайной магической силой. Неожиданные и в то же время естественные свойства натуральных чисел, обнаруженные древними математиками, удивляли их своей замечательной красотой и вдохновляли на новые исследования. Простые числа следует одно за другим по закону, который еще не найден. Но простые числа в математике играют важную роль. Они являются теми кирпичиками, из которых с помощью умножения строят все остальные числа.

Цель работы

Изучить историю изучения простых чисел, исследовать их существование в природе и использование их человеком.

Задачи

1. Собрать и изучить материал о простых числах;

2. Рассмотреть закономерности и свойства в ряду простых чисел;

3. Создание презентации.

Методы исследования. Работа с учебной и научно-популярной литературой, ресурсами сети Интернет.

1. Метод «решето Эратосфена»

2. Наблюдение, сравнение, анализ, аналогия.

Объект исследования

Простые числа.

Гипотеза

Простые числа "спрятаны" в природе, но человечество научилось их использовать.

Содержание

Введение

Глава I. Из истории простых чисел

Глава II. Простые числа в природе и их использование человеком

1) Периодические цикады

2) Криптография

3) Загадки простых чисел

Глава III. Закономерности и свойства простых чисел

Список литературы

Введение

Простое число -- это натуральное число, которое имеет ровно два различных натуральных делителя: единицу и самого себя. Все остальные числа, кроме единицы, называются составными. Таким образом, все натуральные числа, бомльшие единицы, разбиваются на простые и составные. Изучением свойств простых чисел занимается теория чисел.

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы, представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа -- элементарные «строительные блоки» натуральных чисел.

Представление натурального числа в виде произведения простых называется разложением на простые или факторизацией числа.

Глава I. Из истории простых чисел

Греческий математик Эратосфен, живший более чем за 2000 лет до н.э., составил первую таблицу простых чисел. Эратосфен родился в городе Кирене, получил образование в Александрии под руководством Каллимаха и Лисания, в Афинах слушал философов Аристона Хиосского и Аркесилая, тесно сблизился со школой Платона. В 246г. до.н.э., после смерти Каллимаха, царь Птолемей Эвергет вызвал Эратосфена из Афин и поручил ему заведовать Александрийской библиотекой. Эратосфен работал во многих областях науки: филология, грамматика, история, литература, математика, хронология, астрономия, география и музыка.

Для отыскания простых чисел Эратосфен придумал такой способ. Он записал все числа от 1 до какого-то числа, а потом вычеркнул единицу , которая не является ни простым, ни составным числом, затем вычеркивал через одно все числа, идущие после 2 ( числа, кратные 2, т.е. 4,6,8, и т.д.) . Первым оставшимся числом после 2 был 3. Далее вычеркивались все числа кратные 3, т.е. 6,9,12, и т.д. В конце концов оставались невычеркнутыми только простые числа. ( рис.1)

Так как греки делали записи на покрытых воском табличках или на натянутом папирусе, а числа не вычёркивали, а выкалывали иглой, то таблица в конце вычислений напоминала решето. Поэтому метод Эратосфена называют решетом Эратосфена: в этом решете «отсеиваются» простые числа от составных. Таким способом в настоящее время составляют таблицы простых чисел, но уже с помощью вычислительных машин.

Глава II. Простые числа в природе и их использование человеком

1) Периодические цикады

Люди изменили окружающий нас мир, построили невероятные города, и разработали впечатляющие технологии, которые привели к появлению современного мира. Спрятанный под внешней оболочкой планеты, где мы живем, невидимый мир состоит из чисел, последовательностей и геометрии. Математика - это код, который придает смысл всей вселенной.

В лесах Теннеси этим летом часть кода, о котором идет речь, в прямом смысле слова выросла прямо из земли. Каждые 13 лет примерно на 6 недель хор насекомых очаровывает всех, кто становится свидетелем этого редкого природного явления. Выживание этих цикад, которых можно найти только в восточных регионах северной Америки, зависит от странных свойств некоторых из самых фундаментальных чисел в математике - простых чисел, чисел, делящихся только на самих себя и других.

Цикады появляются здесь периодически, но их появление всегда происходит в те года, числа которых состоят из простых чисел. В случае с выводком, который появился вокруг Нэшвилле в этом году, то с момента их прошлого появления прошло 13 лет. Выбор 13-детнего цикла не кажется случайным. В разных частях северной Америки есть еще два выводка, жизненный цикл которых также составляет 13 лет. Они возникают в разных регионах и в разные года, но между появлениями этих живых существ проходит ровно 13 лет. Вдобавок, существует еще 12 выводков насекомых, которые появляются через каждые 17 лет.

Вы можете принять эти числа за совершенно случайные. Но это очень любопытно, что не существует цикад с циклом жизни, равным 12, 14, 15, 16 или 18 лет. Однако, посмотрите на этих цикад глазами математика и картина начинает проясняться. Потому, что числа 13 и 17 оба являются неделимыми, это дает цикадам эволюционные преимущества между другими животными, циклы жизни которых являются периодическими, а не простыми числами. Возьмем, к примеру, хищника, который появляется в лесах каждые шесть лет. Тогда восьми- или девятилетние циклы жизни цикад будут совпадать с циклами жизни хищников, в то время как семилетние циклы жизни будут совпадать с циклом жизни хищника намного реже.

Согласно одной теории, у цикады имеется паразит, также обладающий длинным жизненным циклом. Цикада, естественно, стремится избавиться от паразита. Если паразит обладает жизненным циклом продолжительностью, скажем 2 года, то цикада стремится избежать жизненного цикла, продолжительность которого в годах делится на 2, так как в противном случае цикада, появляясь из-под земли, и паразит регулярно встречались бы. Аналогично, если бы паразит обладал жизненным циклом продолжительностью 3 года, то цикада стремилась бы избегать жизненных циклов, продолжительность которых в годах выражалась числом, кратным 3. Следовательно, чтобы избежать совпадений с паразитом, лучшей стратегией для цикады было бы иметь жизненный цикл, длящийся простое число лет. Так как ни одно целое число (кроме 1 и 17) не делит число 17, Magicicada septendecim очень редко встречается со своим паразитом. Если продолжительность жизненного цикла паразита составляет 2 года, то цикада встречается с ним только раз в 34 года, а если продолжительность жизненного цикла паразита больше, например, составляет 16 лет, то его встреча с цикадой происходит лишь раз в 272 (= 16·17) года.

«Реванш» для паразита возможен только в двух случаях: при его годичном жизненном цикле и при жизненном цикле продолжительностью 17 лет. Маловероятно, однако, что паразит выживет на протяжении 17 своих поколений подряд, так как первым 16 поколениям будет не на ком паразитировать. С другой стороны, чтобы достичь 17-летней продолжительности жизненного цикла, поколениям паразита необходимо пройти в своей эволюции 16-летний жизненный цикл. Это означало бы, что на каком-то этапе эволюции паразит и цикада не встречались бы на протяжении 272 лет! И в том, и в другом случае большой жизненный цикл продолжительностью в простое число лет способствуют выживанию цикады.

Возможно, именно этим и объясняется, что пресловутый паразит так никогда и не был найден! В гонке на выживание с цикадой паразит, по-видимому, постоянно увеличивал продолжительность своего жизненного цикла до тех пор, пока не наткнулся на 16-летний барьер. После этого паразит на протяжении 272 лет не мог встретиться со своей жертвой и за это время вымер. В результате появилась цикада с жизненным циклом длиной 17 лет. Необходимость в более продолжительном жизненном цикле для цикады отпала, поскольку паразит более не существовал.

Эти насекомые вмешались в математический код, чтобы выжить.

2) Криптография

Цикады обнаружили пользу использования простых чисел для своего выживания, однако люди поняли, что эти числа являются не только ключом к выживанию, но и огромным количеством строительного материала в математике. Каждое число, по сути, представляет собой совокупность простых чисел, а совокупность чисел составляет математику, а из математики вы получите целый научный мир.

Простые числа находят спрятанными в природе, но человечество научилось их использовать.

Понимание фундаментального характера этих чисел и использование их свойств людьми, в буквальном смысле поставило их в основу всех кодов, которых охраняют мировые кибер-секреты.

Криптография, благодаря которой наши кредитные карточки остаются в безопасности, когда мы покупаем что-нибудь онлайн, использует те же числа, которые защищают цикад в Северной Америке - простые числа. Каждый раз, когда вы вводите номер своей кредитной карты на вебсайте, вы полагаетесь на то, что простые числа сохранят ваши тайны и информацию о вас в секрете. Для кодирования вашей кредитной карты ваш компьютер получает публичный номер Н с вебсайта, который и будет использоваться для совершения операций с вашей кредитной картой.

Это перемешивает ваши данные так, что закодированное письмо может быть послано через интернет. Вебсайт использует простые числа, на которые делят число Н, чтобы раскодировать послание. Хотя Н является открытым числом, простые числа, из которых оно состоит, являются секретными ключами, которые расшифровывают данные. Причиной, по которой такое кодирование является настолько безопасным, является то, что очень легко перемножить простые числа между собой, но разложить число на простые практически невозможно.

3) Загадки простых чисел

Простые числа являются атомами арифметики, гидрогеном и оксигеном мира чисел. Но вопреки их фундаментальному характеру, они также являют собой одну из самых больших загадок математики. Потому что, проходя по вселенной чисел практически невозможно предсказать, где вы встретите следующее простое число.

Мы знаем, что количество простых чисел уходит в бесконечность, но поиск закономерности появления простых чисел является самой большой загадкой математики. Приз в миллион долларов обещан тому, кто сможет раскрыть тайну этих чисел. Загадка о том, когда первый раз цикады начали пользоваться простыми числами, чтобы выжить является такой же сложной, как и сама загадка простых чисел.

Простые числа - «капризны». Таблицы простых чисел обнаруживают большие «неправильности» в распределении простых чисел

Пестрота картины распределения простых чисел увеличивается еще более, если отметить, что существуют пары простых чисел, которые отделены в натуральном ряду только одним числом («близнецы»). Например. 3 и 5, 5 и 7, 11 и 13, 10016957 и 10016959. С другой стороны, существуют пары простых чисел, между которыми много составных. Например, все 153 числа от 4652354 до 4652506 являются составными.

За нахождение простых чисел из более чем 100 000 000 и 1 000 000 000 десятичных цифр EFF назначила денежные призы соответственно в 150 000 и 250 000 долларов США.

Глава III. Закономерности и свойства простых чисел

Количество простых чисел до 1000: 168 чисел.

Простые числа от 2 до 100: 25 чисел (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,71, 73, 79, 83, 89, 97)

Простые числа от 100 до 200: 21 число (101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199)

Простые числа от 200 до 300: 16 чисел (211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293)

Простые числа от 300 до 400: 16 чисел (307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397)

Простые числа от 400 до 500: 17 чисел (401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499)

Простые числа от 500 до 600: 14 чисел (503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599)

Простые числа от 600 до 700: 16 чисел (601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691)

Простые числа от 700 до 800: 14 чисел (701,709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797)

Простые числа от 800 до 900: 15 чисел (809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887)

Простые числа от 900 до 1000: 14 чисел (907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997)

Числа - близнецы до 500: 3-5; 5-7; 11-13; 17-19; 29-31; 41-43; 59-61; 71-73; 101-103; 107-109; 137-139; 149-151; 179-181; 191-193; 197-199; 227-229; 239-241; 269-271; 281-283; 311-313; 347-349; 419-421; 431-433; 461-463. (24 пары.)

Числа - близнецы от 500 до 1000: 521-523; 569-571; 599-601; 617-619; 641-643; 659-661; 809-811; 821-823; 827-829; 857-859; 881-883. (11 пар.)

Всего до тысячи 35 пар чисел-близнецов.

Числа- палиндромы: 16 чисел (11,101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929 ).

Симметричные себе простые числа: 107 - 701, 113 - 311, 149 - 941,

157 - 751, 167 - 761, 179 - 971, 199 -991, 337- 733, 347 - 743,

359 - 953, 389 - 983, 709 - 907, 739 -937, 769 - 967 (14 пар)

Вывод: количество простых чисел постепенно уменьшается.

Заключение.

Хорошо было бы, если все простые числа можно было сосчитать! Но эта проблема до сих пор остается не решенной. Как сказал греческий геометр Евклид: самого большого простого числа не существует.

Список литературы

простой число периодический цикада

1. Афанасенко Е.И. и др. Детская энциклопедия. Т.2. М.:Просвещение,1964.

2. Мартин Гарднер. Математические головоломки и

развлечения. М.:Оникс, 1994.

3. Глейзер Г.И. История математики в школе. М.:Просвещение,1982

4. Л.Ф.Пичурин. За страницами учебника алгебры. М.:Просвещение,1991.

5. Савин А.П. Энциклопедический словарь юного математика. М.:Педагогика,1989.

6. Р.Курант, Г.Роббинс. Что такое математика?

М.:МЦНМО, 2004.

7. http://tmn.fio.ru/works/60x/306/06_2.htm

8. Н. И. Архиезер, «П. Л. Чебышев и его научное наследие»

9. http://people.reed.edu/~jerry/361/lectures/rvm.pdf.

Размещено на Allbest.ru


Подобные документы

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

  • Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.

    научная работа [20,2 K], добавлен 29.12.2006

  • Характеристика истории изучения значения простых чисел в математике путем описания способов их нахождения. Вклад Пьетро Катальди в развитие теории простых чисел. Способ Эратосфена составления таблиц простых чисел. Дружественность натуральных чисел.

    контрольная работа [27,8 K], добавлен 24.12.2010

  • Исторические факты исследования простых чисел в древности, настоящее состояние проблемы. Распределение простых чисел в натуральном ряде чисел, характер и причина их поведения. Анализ распределения простых чисел-близнецов на основе закона обратной связи.

    статья [406,8 K], добавлен 28.03.2012

  • Проблема универсального генератора простых чисел. Попытки создания формул для нахождения простых чисел. Сущность теоремы сравнений. Доказательство "Малой теоремы Ферма". "Золотая теорема" о квадратичном законе взаимности. Генераторы простых чисел Эйлера.

    реферат [22,8 K], добавлен 22.03.2016

  • Применение способа решета Эратосфена для поиска из заданного ряда простых чисел до некоторого целого значения. Рассмотрение проблемы простых чисел-близнецов. Доказательство бесконечности простых чисел-близнецов в исходном многочлене первой степени.

    контрольная работа [66,0 K], добавлен 05.10.2010

  • Поиски и доказательства простоты чисел Мерсенна. Окончание простых чисел Мерсенна на цифру 1 и 7. Вопрос сужения диапазона поиска. Эффективный алгоритм Миллера-Рабина. Разделение алгоритмов на вероятностные и детерминированные. Числа джойнт ряда.

    статья [127,5 K], добавлен 28.03.2012

  • Важная роль простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Необходимость закономерности распределения ПЧ в ряду натуральных чисел. Цель: найти закономерность среди ПЧ + СЧ, а потом закономерность среди

    доклад [217,0 K], добавлен 21.01.2009

  • Числа натурального ряда, их закономерное периодическое изменение: сведение бесконечного к конечному путем выявления периодичности. Обоснование метода поиска простых чисел с помощью "решета" Баяндина. Закон динамического сохранения относительных величин.

    книга [359,0 K], добавлен 28.03.2012

  • Простые числа-близнецы - числа, находящиеся на расстоянии друг от друга в 2 единицы.

    научная работа [65,3 K], добавлен 12.07.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.