Функционально-графический подход к решению задач с параметрами
Выполнение алгебраических преобразований, логическая культура и техника исследования. Основные типы задач с параметрами, нахождение количества решений в зависимости от значения параметра. Основные методы решения задач, методы построения графиков функций.
Рубрика | Математика |
Вид | методичка |
Язык | русский |
Дата добавления | 19.04.2010 |
Размер файла | 88,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Функционально-графический подход к решению задач с параметрами
(Слайд 1 -2)
Введение
Изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами.
Задачи с параметрами вызывают большие затруднения. Это связано с тем, что решение таких задач требует не только знания свойств функций и уравнений, умения выполнять алгебраические преобразования, но также высокой логической культуры и хорошей техники исследования.
(Слайд 3)
Математическое понятие параметра
Параметром называются коэффициенты при неизвестных или свободные члены, заданные не конкретными числовыми значениями, а обозначенные буквами.
Решить задачу с параметром - это значит, для каждого значения параметра найти значения x, удовлетворяющие условию этой задачи.
(к 4 слайду)
Выделяют несколько типов задач с параметрами..
Основные типы задач с параметрами:
Тип 1. Задачи, которые необходимо решить для всех значений параметра или для значений параметра из заданного промежутка.
Тип 2. Задачи, где требуется найти количество решений в зависимости от значения параметра.
Тип 3. Задачи, где необходимо найти значения параметра, при которых задача имеет заданное количество решений
Тип 4. Задачи, в которых необходимо найти значения параметра, при которых множество решений удовлетворяет заданным условиям.
(к 5 слайду)
Основные методы решения задач:
-аналитический, т е с помощью алгебраических выражений
-графический, т е с помощью построения графиков функций
-решение относительно параметра, т е в случае, когда параметр считается еще одной переменной..
Наш доклад посвящен второму способу решения задач с параметрами.
(к 6 слайду) построение графиков функций.
При этом важно знать основные правила построения функций, которые можно рассмотреть на примере графика функции у = |х|.
График функции у = |х- а| получается из графика функции у = |х| с помощью параллельного переноса вправо если а больше 0 на а единиц, и влево если а меньше 0 на -а единиц.
График функции у = |х| + b получается из графика функции у = |х| при параллельном переносе вверх на b единиц если b больше 0, и вниз на - b единиц если b меньше 0.
Задача1
Задана функция у = f(х). Нужно указать количество корней уравнения f(х) =а при всех значениях параметра.
Данная задача относится ко 2му типу задач с параметрами. Здесь возможно несколько случаев: при а < - 5 уравнение имеет 1 корень, при а =- 5 - 2 корня, при - 5<a<- 2- три корня, при а = - 2- четыре корня, при - 2<a<1- пять корней, при а = 1 - четыре корня, при 1<a<3 - три корня, при а =3 - два корня и при а>3 - один корень.
Задача 2
Следующая задача относится к 4 типу задач с параметрами.
Нам необходимо найти значения параметра, при которых множество точек, заданное неравенством (1) является подмножеством множества точек, заданного неравенством (2).
Графиком второго неравенства является область, ограниченная ромбом.
Наша задача сводится к тому, чтобы найти все значения параметра а, при которых множество точек сжимается до таких размеров, чтобы поместиться в этот ромб.
Неравенство (1) равносильно системе (3).
Очевидно, что при а ? 0 эта система задает неограниченное множество точек (рис 2), которое не может поместиться внутри ромба.
Если а > 0, то система задает фигуру, изображенную на рис 3.
Из соображений симметрии для поиска значений параметра потребуем, чтобы уравнение 1 - ах? = 5/4 - 2х при а > 0 имело не более одного корня. Отсюда а ? 4.
Задача 3
Данную задачу можно отнести к смешанному типу (3, 4)
В ней нужно указать положительные значения параметра, при которых площадь фигуры, ограниченная параболами (1) и (2) равна а? и найти значения а, при которых задача имеет смысл.
Решение: Найдем абсциссы точек пересечения этих парабол, для этого решим квадратное уравнение (). Его корнями являются числа x1 и x2. Затем вычислим площадь фигуры, ограниченной параболами. Площадь находим с помощью определенного интеграла с пределами интегрирования от x1 до x2.
По условию площадь фигуры = а, тогда выразим значение параметра b. Из условия, а и b больше 0 следует, что решение задачи существует при а принадлежащем интервалу (о;4/3)
Задача 5
Найти значение параметра к, при котором площадь фигуры ограниченной линиями будет наименьшей?
Решение: Найдем абсциссы точек пересечения параболы и прямой. Для этого решим уравнение (3) или (4). Так как дискриминант > 0 то уравнение при все значениях параметра будет иметь 2 корня x1 и x2. Вычислим площадь фигуры ограниченную линиями 1) и 2). Ее так же вычисляем с помощью определенного интеграла с пределами интегрирования x1 и x2.
Согласно т. Виета для корней x1 и x2. уравнения (2): сумма корней равна к-2, а их произведение -4.
Min площадь достигается при к=2 и
Эту задачу можно отнести к 4 типу.
При каком значении а площадь фигуры, ограниченной линиями x=2, равна
Заключение
Итак, мы рассмотрели часто встречающиеся типы уравнений и способы их решений и сделали вывод, что наиболее эффективным является графический метод решения задач с параметрами.
Изучение физических, химических, экономических и многих других закономерностей часто приводит к решению задач с параметрами, к исследованию процесса в зависимости от параметра. Поэтому навыки решения задач с параметрами, знание некоторых их особенностей нужны всем специалистам, в любой области научной и практической деятельности
Подобные документы
Задачи с параметрами и методы их решений. Использование свойств функций, параметра как равноправной переменной, симметрии аналитических выражений, "каркаса" квадратичной функции, теоремы Виета. Трансцендентные уравнения с параметром и методы их решений.
дипломная работа [3,2 M], добавлен 06.11.2013Основные понятия математического моделирования, характеристика этапов создания моделей задач планирования производства и транспортных задач; аналитический и программный подходы к их решению. Симплекс-метод решения задач линейного программирования.
курсовая работа [2,2 M], добавлен 11.12.2011Общая характеристика факультативных занятий по математике, основные формы и методы проведения. Составление календарно-тематического плана факультативного курса по теме: "Применение аппарата математического анализа при решении задач с параметрами".
курсовая работа [662,1 K], добавлен 27.09.2013Розгляд теоретичних основ рівнянь з параметрами. Основні види даних рівнянь. Аналітичний та графічний методи розв’язування задач із використанням формул, властивостей функцій. Ознайомлення із системою розв’язування задач з параметрами для 9 класу.
курсовая работа [605,9 K], добавлен 29.04.2014Способы решения логических задач типа "Кто есть кто?" методами графов, табличным способом, сопоставлением трех множеств; тактических, истинностных задач, на нахождение пересечения множеств или их объединения. Буквенные ребусы и примеры со звездочками.
курсовая работа [622,2 K], добавлен 15.06.2010Методы решения задач с экономическим содержанием повышенного уровня сложности. Выявление структуры экономических задач на проценты. Вывод формул для решения задач на равные размеры выплат. Решение задач на сокращение остатка на одну долю от целого.
курсовая работа [488,3 K], добавлен 22.05.2022Методика викладання теми, що стосується графічних методів розв’язування задач з параметрами. Обережне відношення до фіксованого, але невідомого числа при роботі з параметром. Побудова графічного образу на координатній площині, застосування похідної.
дипломная работа [7,5 M], добавлен 20.08.2010Стандартные методы решений уравнений и неравенств. Алгоритм решения уравнения с параметром. Область определения уравнения. Решение неравенств с параметрами. Влияние параметра на результат. Допустимые значения переменной. Точки пересечения графиков.
контрольная работа [209,4 K], добавлен 15.12.2011Рассмотрение видов арифметических задач, используемых в работе с дошкольниками. Этапы обучения решению арифметических задач. Изучение структуры, модели записи математического действия. Алгоритм решения задач. Роль данных занятий в общем развитии ребенка.
презентация [379,7 K], добавлен 19.06.2015Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.
презентация [247,7 K], добавлен 20.02.2015