Регрессионный анализ

Функциональные и стохастические связи. Статистические методы моделирования связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Проверка адекватности регрессионной модели.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 04.09.2007
Размер файла 214,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Используя данные таблицы 1 я рассчитала линейный коэффициент корреляции r. Но чтобы использовать формулу для линейного коэффициента корреляции рассчитаем дисперсию результативного признака уy:

Квадрат линейного коэффициента корреляции r2 называется линейным коэффициентом детерминации. Из определения коэффициента детерминации очевидно, что его числовое значение всегда заключено в пределах от 0 до 1, то есть 0 ? r2 ? 1. Степень тесноты связи полностью соответствует теоретическому корреляционному отношению, которое является более универсальным показателем тесноты связи по сравнению с линейным коэффициентом корреляции. ?????? ??? ????????? ??????????? ????? ???????????, ???? ??????????????? ?????????? ? ?????????? ????????? ????????? ??? ????????????????? ??????????, ?? ?????? ????????????? ????????? ???????? ?? ?? ?????????? ???????? ?????? ? ???, ????? ???????? ? ??????? ??????? ?????? ?? ???????. ?????????????? ??????????. ???? ????????????. ???????????? ? ????????? ????????? ???????? ??? ?????????? ????????? ????????? ???? ?????????? ? ????????. ? ?????? ??????????? ????? ??????????? ? ?????? ????? ????????? ????? ??????????? ???????? ????. ?????????? ? ?????????? ???????????? ?????????. ????? ????????? ??????????? ????????????, ?????????? ??? ?????????? ????????? ?????????, ? ??????? ? ???????? ????????? ?????????? ????? ?????? ??????????. ?? ????????? ?????, ??? ???????? ???????????? ??? ????????????, ??? ??????? ?????????? ??????? ? ?????????? ???????????. ??? ?????????? ????? ????????????? ?????????. ? ?????? ?????? ?????????? ??????????? ?? ???????????? ?????????? - ??????????? ???????? ??? ??????? ????????????? ???????????? ???????? ???????? ??????????, ??????? ?? ?????????? ????????, ??? ??????????. ?????????? ????????? ?????????? ? ?????????. ??? ???????????????? ??????? ?????????? ????????????? ?????????????, ?????????? ?? ?????????? ????????? ? ?????????? ??????????.

Факт совпадений и несовпадений значений теоретического корреляционного отношения з и линейного коэффициента корреляции r используется для оценки формы связи. [4]

Выше отмечалось, что посредством теоретического корреляционного отношения измеряется теснота связи любой формы, а с помощью линейного коэффициента корреляции - только прямолинейной. Следовательно, значения з и r совпадают только при наличии прямолинейной связи. Несовпадение этих величин свидетельствует, что связь между изучаемыми признаками не прямолинейная, а криволинейная. Установлено, что если разность квадратов з и r не превышает 0,1 , то гипотезу о прямолинейной форме связи можно считать подтвержденной. В моем случае наблюдается примерное совпадение линейного коэффициента детерминации и теоретического корреляционного отношения, что дает мне основание считать связь между капиталом банков и их работающими активами прямолинейной.

При линейной однофакторной связи t-критерий можно рассчитать по формуле:

,

где (n - 2) - число степеней свободы при заданном уровне значимости б и объеме выборки n. ?????? ?????????????? ??????? ??????? ? ?????????? ??????, ??????????? ?? ????????? ??????????? ??????????? ???????? ?????? ???????? ????????? ??????????. ????????????? ?????? ???????? ???????? ????????? ???????????? ???????????? ????? ?????????-?????????????? ???????????. ??? ?????? ?? ?????????? ? ?????? ????? ???????????????? ? ?????????????? ??????? ???????????? ?????? ???????? ?????????. ????????? ??????????????? ???????????? ??????? ? ???, ??? ????? ????? ?????????? ??????? ? ????????????? ?????????? ???????. ?????? ????? ?????? ????? ????? ????????? ?????????, ????? ??????? ???????? ?????????? ???????, ??????????????? ??????????? ???????. ???????? ?????????? ??????? ?????????. ?????? ?????????????? ??????????, ????????? ? ????????????? ????????, ??????? ? ?????????????, ??? ????????????? ?????? ???????????? ????????? ? ???????????, ?????? ??? ????????? ???????? ????????? ????????????. ????? ????, ? ?????? ?????? ?? ????????????? ?????????? ??? ??????????? ????????. ?????, ?? ????????, ??????????, ????? ???? ???????? ???????????, ? ??????? ?????? ???????? (????????, ????????? ???????? ?????????), ? ????? ???????? (???????, ????? ????? ?????????????????? ?????).

Так, для коэффициента корреляции между капиталом и работающими активами получается:

Если сравнить полученное tрасч с критическим значением из таблицы Стьюдента, где н=30, а б=0,01 (tтабл=2,750), то полученное значение t-критерия будет больше табличного, что свидетельствует о значимости коэффициента корреляции и существенной связи между капиталом и работающими активами.

Таким образом, построенная регрессионная модель y=245,75+1,42x в целом адекватна, и выводы полученные по результатам малой выборки можно с достаточной вероятностью распространить на всю гипотетическую генеральную совокупность. ?? ??? ?????? ????????? ?????????? ???????? ????????. ?????? ????????????? ????????? ?? ?????????? ???????????? ??????????? ???????, ?? ????????, ???, ??? ??????? ????? ??????????, ????????????? ?????? ?????????????? ?????????. ??? ????????? ?????? ????????????? ????????? ?????????????? ????? ????????? ?????? ?????????. ? ?????? ??????????? ??????????, ??????????? ?????? ??? ??????. ?????????? ?? ???????? ????????????? ???????????? ??? ???????? ?????????????? ??????? ???? ????????????? ????????? ?? ???? ???????? ?????? ????????????? ???????? ???????? ????????? ?????????? ???????????? ????????. ??? ????? ????????? ?? ??? ????? ????????? ???????. ?????????? ? ???????? ???????? ????????? ???? ????????????? ????????????? ????? ????????????? ?????? ?, ???????????, ?? ???? ?????????? ?????????, ???????? ?? ???????????? ???????????? ????????. ???????????? ???????????? ? ????????????? ??????????. ??? ????????? ???????? ?????????, ????????? ?? ????????? ????????? ??????????, ??????? ??????????? ???? ??????????? ? ????????????? ?????????. ?????? ?? ???????????? ???????????? ?????????? ????????????? ??????????. ??????? ????? ? ????, ??? ???????? ????????? ???????. ?????????? ???????? ????????????? ?? ????????? ??????? ????? ?????.

3. Практическая часть

- уравнение регрессии.

x

1

2

3

4

5

6

7

8

9

10

y

1.35

1.09

6.46

3.15

5.80

7.2

8.07

8.12

8.97

10.66

Приведем квадратное уравнение к линейной форме:

;

Запишем матрицу X.

Составим матрицу Фишера.

Система нормальных уравнений.

Решим ее методом Гаусса.

Уравнение регрессии имеет вид:

[7]

3.1. Оценка значимости коэффициентов регрессии.

Для проверки нулевой гипотезы используем критерий Стьюдента.

Коэффициенты значимые коэффициенты.[6]

3.2. Проверка адекватности модели по критерию Фишера.

гипотеза о равенстве математического ожидания отвергается. [4]

3.3. Проверка адекватности модели по коэффициенту детерминации или множественной корреляции.

Коэффициент детерминации :

- регрессионная модель адекватна.

Коэффициент множественной корреляции

Рассчитать и построить график уравнения прямолинейной регрессии для относительных значений PWC170 и времени челночного бега 3х10 м у 13 исследуемых и сделать вывод о точности расчета уравнений, если данные выборок таковы:

xi, кГ м/мин/кг ~ 15,6; 13,4; 17,9; 12,8; 10,7; 15,7; 11,7; 12,3; 12,3; 11,1; 14,3; 12,7; 14,4 yi, с ~ 6,9; 7,2; 7,1; 6,7; 7,6; 7,0; 6,4; 6,9; 7,7; 7,6; 7,9; 8,2; 6,8

Решение

1. Занести данные тестирования в рабочую таблицу и сделать соответствующие расчеты.

xi

xi -

(xi - )2

yi

yi -

(yi - )2

(xi - )(yi - )

15.6

2.1

4.41

6.9

-0.3

0.09

-0.63

13.4

-0.1

0.01

7.2

0

0

0

17.9

4.4

19.36

7.1

-0.1

0.01

-0.44

12.8

-0.7

0.49

6.7

-0.5

0.25

0.35

10.7

-2.8

7.84

7.6

0.4

0.16

-1.12

15.7

2.2

4.84

7.0

-0.2

0.04

-0.44

11.7

-1.8

3.24

6.4

-0.8

0.64

1.44

12.3

-1.2

1.44

6.9

-0.3

0.09

0.36

12.3

-1.2

1.44

7.7

0.5

0.25

-0.60

11.1

-2.4

5.76

7.6

0.4

0.16

-0.96

14.3

0.8

0.64

7.9

0.7

0.49

0.56

12.7

-0.8

0.64

8.2

1

1

-0.80

14.4

0.9

0.81

6.8

-0.4

0.16

-0.36

= 13.5

=50,92

= 7,2

=3,34

= -2,64

1. Рассчитать значение нормированного коэффициента корреляции по формуле:

2. Рассчитать конечный вид уравнений прямолинейной регрессии по формулам (2) и (3):

(2)
(3)

Т.е.

4. Рассчитать абсолютные погрешности уравнений регрессии по формулам (4) и (5):

5. Рассчитать относительные погрешности уравнений регрессии по формулам (6) и (7):


6. Для графического представления корреляционной зависимости между признаками рассчитать координаты линий регрессии, подставив в конечный вид уравнений (1) и (2) данные любого исследуемого (например, четвертого из списка).
Тогда:

при х = 12,8 кГм/мин/кг у =7,235 с » 7,2 с;

при у = 6,7 с х = 13,895 с » 13,9 кГм/мин/кг.

7. Представить графически данное уравнение регрессии.

8. На основании произведенных расчетов и графического изображения уравнения регрессии сделать вывод.

Вывод:
1) в исследуемой группе наблюдается недостоверная обратная взаимосвязь между данными относительных значений PWC170 и времени челночного бега 3х10 м, т.к. rху = -0,20 < rst = 0,55 для К= 11 при ?= 95%;
2) относительная погрешность функции ух = 7,875 - 0,05х меньше (7,22%), а, следовательно, прогноз результата в челночном беге по данным относительных значений пробы PWC170 более точен;
3) на графике линии уравнения регрессии расположены почти под прямым углом, так как значения коэффициента корреляции близки к нулю.[3]

Заключение

В исследуемой группе наблюдается недостоверная обратная взаимосвязь между данными относительных значений PWC170 и времени челночного бега 3х10 м, т.к. rху = -0,20 < rst = 0,55 для К= 11 при ?= 95%;
- относительная погрешность функции ух = 7,875 - 0,05х меньше (7,22%), а, следовательно, прогноз результата в челночном беге по данным относительных значений пробы PWC170 более точен;
- на графике линии уравнения регрессии расположены почти под прямым углом, так как значения коэффициента корреляции близки к нулю.

Также в работе показана корреляционная зависимость показателей 32 российских банков, проведен регрессионный анализ и нашли регрессионную модель данной взаимосвязи показателей. ?????? ?????????????? ??????? ??????? ? ?????????? ??????, ??????????? ?? ????????? ??????????? ??????????? ???????? ?????? ???????? ????????? ??????????. ????????????? ?????? ???????? ???????? ????????? ???????????? ???????????? ????? ?????????-?????????????? ???????????. ??? ?????? ?? ?????????? ? ?????? ????? ???????????????? ? ?????????????? ??????? ???????????? ?????? ???????? ?????????. ????????? ??????????????? ???????????? ??????? ? ???, ??? ????? ????? ?????????? ??????? ? ????????????? ?????????? ???????. ?????? ????? ?????? ????? ????? ????????? ?????????, ????? ??????? ???????? ?????????? ???????, ??????????????? ??????????? ???????. ???????? ?????????? ??????? ?????????. ?????? ?????????????? ??????????, ????????? ? ????????????? ????????, ??????? ? ?????????????, ??? ????????????? ?????? ???????????? ????????? ? ???????????, ?????? ??? ????????? ???????? ????????? ????????????. ????? ????, ? ?????? ?????? ?? ????????????? ?????????? ??? ??????????? ????????. ?????, ?? ????????, ??????????, ????? ???? ???????? ???????????, ? ??????? ?????? ???????? (????????, ????????? ???????? ?????????), ? ????? ???????? (???????, ????? ????? ?????????????????? ?????).

Полученное уравнение y=245,75+1,42х позволяет проиллюстрировать зависимость размера работающих активов банков от размера их капитала.

И так, с помощью корреляционно-регрессионного анализа, можно исследовать показатели банков.[8]

Использованная литература

1. Аверкин А.Н., Батыршин И.З., Блишун А.Ф. и др. Нечеткие множества в моделях управления и искусственного интеллекта // Под ред. Д.А. Поспелова. - М.: Наука, 1986. - 312 с.

2. Аветисян Д.О. Проблемы информационного поиска: (Эффективность, автоматическое кодирование, поисковые стратегии) - М.: Финансы и статистика, 1981. - 207 с.

3. Айвазян С.А., Бежаева З.И., Староверов О.В. Классификация многомерных наблюдений. - М.: Статистика, 1974. - 240 с.

4. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Основы моделирования и первичная обработка данных. Справочное издание. - М.: Финансы и статистика, 1983. - 472 с.

5. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Исследование зависимостей: Справочник. - М.: Финансы и статистика, 1985. - 182с.

6. Айвазян С.А. , Мхитарян В.С. Прикладная статистика и основы эконометрики. - М. Юнити, 1998. - 1024 с.

7. Ван дер Варден Б.Л. Математическая статистика. - М.: Изд-во иностр. лит., 1960. - 302 с.

8. Гайдышев И.П. Анализ и обработка данных: специальный справочник. - СПб.: Питер, 2001. - 752 с.

9. Гмурман В.С. Теория вероятностей и математическая статистика. - М.: Высш. шк., 1972. - 368 с.

10. Калинина В.Н., Панкин В.Ф. Математическая статистика. - М.: Высш. шк., 2001. - 336 с.

11. Кендалл М., Стьюарт А. Теория распределений. - М.: Наука, 1966. - 566 с.

12. Кендалл М., Стьюарт А. Статистические выводы и связи. - М .: Наука, 1973. - 899 с.


Подобные документы

  • Прямолинейные, обратные и криволинейные связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Метод наименьших квадратов. Оценка значимости коэффициентов регрессии. Проверка адекватности модели по критерию Фишера.

    курсовая работа [232,7 K], добавлен 21.05.2015

  • Функциональные и корреляционные зависимости. Сущность корреляционной связи. Методы выявления наличия корреляционной связи между двумя признаками и измерение степени ее тесноты. Построение корреляционной таблицы. Уравнение регрессии и способы его расчета.

    контрольная работа [55,2 K], добавлен 23.07.2009

  • Первичная обработка статистических данных по количеству зарегистрированных абонентских терминалов сотовой связи за 2008 год на 1000 населения в регионах России. Интервальное оценивание параметров. Гипотеза о виде распределения. Регрессионный анализ.

    курсовая работа [439,3 K], добавлен 06.10.2013

  • Анализ влияния радиуса кривошипа на величину максимальной температуры рабочего тела в цилиндре двигателя. Получение функциональной зависимости между данными величинами методом наименьших квадратов. Проверка работоспособности регрессионной модели.

    контрольная работа [57,1 K], добавлен 23.09.2010

  • Моделирование входного заданного сигнала, построение графика, амплитудного и фазового спектра. Моделирование шума с законом распределения вероятностей Рэлея, оценка дисперсии отсчетов шума и проверка адекватности модели шума по критерию Пирсона.

    курсовая работа [2,3 M], добавлен 25.11.2011

  • Предпосылки корреляционного анализа - математико-статистического метода выявления взаимозависимости компонентов многомерной случайной величины и оценки их связи. Точечные оценки параметров двумерного распределения. Аппроксимация уравнений регрессии.

    контрольная работа [648,3 K], добавлен 03.04.2011

  • Вероятность и ее общее определение. Теоремы сложения и умножения вероятностей. Дискретные случайные величины и их числовые характеристики. Закон больших чисел. Статистическое распределение выборки. Элементы корреляционного и регрессионного анализа.

    курс лекций [759,3 K], добавлен 13.06.2015

  • Алгоритм проведения регрессионного анализа для создания адекватной модели, прогнозирующей цены на бензин на будущий период. Основы разработки программного обеспечения, позволяющего автоматизировать исследования операций в заданной предметной области.

    контрольная работа [182,0 K], добавлен 06.02.2013

  • Построение многофакторной корреляционно-регрессионной модели доходности предприятия: оценка параметров функции регрессии, анализ факторов на управляемость, экономическая интерпретация модели. Прогнозирование доходности на основе временных рядов.

    дипломная работа [5,1 M], добавлен 28.06.2011

  • Статистическое описание и выборочные характеристики двумерного случайного вектора. Оценка параметров линейной регрессии, полученных по методу наименьших квадратов. Проверка гипотезы о равенстве средних нормальных совокупностей при неизвестных дисперсиях.

    контрольная работа [242,1 K], добавлен 05.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.