Інтегральні характеристики векторних полів

Диференціальні операції другого порядку. Потік векторного поля. Формула Остроградського-Гаусса в векторній формі. Властивості соленоїдального поля. Інваріантне означення дивергенції. Формула Стокса у векторній формі. Властивості потенціального поля.

Рубрика Математика
Предмет Вища математика
Вид реферат
Язык украинский
Прислал(а) vip
Дата добавления 15.03.2011
Размер файла 237,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Дослідження особливостей скалярного та векторного полів. Похідна за напрямом. Градієнт скалярного поля, потенціальне поле. Сутність дивергенції, яка характеризує густину джерел даного векторного поля в розглянутій точці. Ротор або вихор векторного поля.

    реферат [244,3 K], добавлен 06.03.2011

  • Основна теорема про епіморфізм груп. Означення і властивості гомоморфного та ізоморфного відображення кілець, полів. Ізоморфізм циклічних груп. Поняття кільця, поля та їх основні властивості. Вправи на гомоморфізм та ізоморфізм груп, кілець і полів.

    дипломная работа [859,1 K], добавлен 19.09.2012

  • Суть поверхневих інтегралів першого роду, які є узагальненням подвійних інтегралів. Лист Мебіуса, як приклад односторонньої поверхні. Формула Остроградського-Гаусса, яка встановлює зв'язок між поверхневим інтегралом по замкненій поверхні. Формула Стокса.

    реферат [634,6 K], добавлен 16.03.2011

  • Математическое объяснение понятия и свойств скалярного поля. Формулы расчета нормали к поверхности. Вычисление потока векторного поля через прямой круговой цилиндр с заданным радиусом основания. Доказательство теорем Остроградского-Гаусса и Стокса.

    реферат [264,0 K], добавлен 11.02.2011

  • Изложение теории поля с помощью векторного анализа и составление пособия. Циркуляция векторного поля. Оператор Гамильтона и векторные дифференциальные операции второго порядка. Простейшие векторные поля. Применение теории поля в инженерных задачах.

    дипломная работа [190,2 K], добавлен 09.10.2011

  • Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.

    курсовая работа [2,9 M], добавлен 11.07.2012

  • Коротка біографія видатного математика Б. Тейлора. Тейлорова формула із залишковим членом у формі Пеано та у Лагранжовій формі. Розвинення деяких елементарних функцій за формулою Тейлора. Формула Тейлора для многочлена та для функції однієї змінної.

    курсовая работа [547,0 K], добавлен 20.05.2015

  • Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.

    курсовая работа [1,2 M], добавлен 09.12.2008

  • Изучение теории поля с помощью векторного анализа. Векторные поля на плоскости и векторные линии. Вращение, вычисление и свойства дивергенции. Свойство аддитивности циркуляции полей. Ротор и его основные свойства. Рассмотрение формул Грина и Стокса.

    курсовая работа [649,8 K], добавлен 18.12.2011

  • Обзор квадратурных формул Гаусса, их определение, интегральные конструкции, примеры, четко описывающие квадратуры Гаусса. Особенности использования некоторых алгоритмов, позволяющих отследить ход решений задач, использующих квадратурные формулы Гаусса.

    контрольная работа [309,6 K], добавлен 16.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.