Диференціальні операції в скалярних і векторних полях. Основні поняття і формули

Дослідження особливостей скалярного та векторного полів. Похідна за напрямом. Градієнт скалярного поля, потенціальне поле. Сутність дивергенції, яка характеризує густину джерел даного векторного поля в розглянутій точці. Ротор або вихор векторного поля.

Рубрика Математика
Вид реферат
Язык украинский
Дата добавления 06.03.2011
Размер файла 244,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Диференціальні операції в скалярних і векторних полях. Основні поняття і формули

1. Скалярне поле

Нехай - область у тривимірному просторі (або на площині). Кажуть, що в області задано скалярне поле, якщо кожній точці поставлено у відповідність деяке число .

Прикладами скалярних полів є поле температури даного тіла, поле густини даного неоднорідного середовища, поле вологості повітря, поле атмосферного тиску, поле потенціалів заданого електростатичного поля тощо.

Поверхня (лінія), на якій функція набуває одне й те саме значення, називається поверхнею (лінією) рівня скалярного поля (наприклад, поверхні або лінії постійної температури). Надаючи різних постійних значень: , отримаємо сім'ю поверхонь (ліній) рівня даного скалярного поля.

Фізичні скалярні поля не залежать від вибору системи координат: величина є функцією лише точки і, можливо, часу (нестаціонарні поля).

Якщо в просторі ввести прямокутну систему координат , то точка у цій системі координат матиме певні координати і скалярне поле стане функцією цих координат: .

2. Векторне поле

Кажуть, що в області задано векторне поле, якщо кожній точці поставлено у відповідність деякий вектор .

Фізичні приклади векторних полів: електричне поле системи електричних зарядів, яке характеризується в кожній точці вектором напруженості ; магнітне поле, утворене електричним струмом і яке характеризується в кожній точці вектором магнітної індукції ; поле тяжіння, утворене системою мас і яке характеризується в кожній точці вектором сили тяжіння , що діє в цій точці на одиничну масу; поле швидкостей потоку рідини, яке описується в кожній точці вектором швидкості .

Зручною геометричною характеристикою векторного поля є векторні лінії - криві, в кожній точці яких вектор напрямлений по дотичній до кривої. Векторні лінії поля тяжіння, електричного і магнітного полів називається силовими лініями, а поля швидкостей - лініями струму.

Нехай векторна лінія, яка проходить через точку , описується рівнянням , де - параметр. Умова колінеарності вектора поля і дотичного вектора в довільній точці цієї лінії має вигляд

,(1)

де - деяке число. Умову (1) можна записати також у вигляді

(2)

або, помноживши на , у вигляді

.(3)

Кожне із рівнянь (1) - (3) є диференціальним рівнянням векторних ліній у векторній формі і визначає множину векторних ліній. Конкретна векторна лінія, яка проходить через задану точку , визначається додатковою умовою

,(4)

де - радіус-вектор точки .

Фізичні векторні поля не залежать від системи координат: в кожній точці вектор повністю визначається своїм модулем і напрямом. Якщо в просторі введена прямокутна система координат , то векторне поле описується вектор-функцією трьох змінних або трьома скалярними функціями - її координатами:

.

Оскільки в прямокутних координатах , то векторне рівняння (3) для векторних ліній еквівалентне системі диференціальних рівнянь

,(5)

а додаткове векторне рівняння (4) еквівалентне таким умовам:

,(6)

де - координати точки .

3. Похідна за напрямом

Скалярне і векторне поля

і

Називаються диференційованими разів, якщо функції

диференційовані разів. Надалі розглядатимемо поля, диференційовані потрібне нам число разів.

Нехай - скалярне поле, задане в області , - одиничний фіксований вектор; - фіксована точка; - довільна точка із , відмінна від і така, що вектор колінеарний . Нехай, далі, - величина напрямленого відрізка (вона дорівнює його довжині , якщо напрям вектора збігається з напрямом вектора , і дорівнює - , якщо вектори і є протилежними).

Означення. Число називається похідною скалярного поля (функції ) в точці за напрямом і позначається символом .

Похідна за напрямом є швидкістю зміни функції за напрямом в точці .

Якщо в прямокутній системі координат , то

.(7)

Зокрема, якщо вектор збігається з одним із ортів або , то похідна за напрямком збігається з відповідною частинною похідною. Наприклад, якщо , то

.

Аналогічно визначається похідна за напрямом векторного поля.

Означення. Вектор називається похідною векторного поля (вектор-функції ) в точці за напрямом і позначається символом .

Якщо в прямокутній системі координат , то

.

4. Градієнт скалярного поля

скалярне векторне поле дивергенція

Означення. Градієнтом скалярного поля називається вектор-функція

.

Із рівності (7) випливає, що

,(8)

Звідси , оскільки .

Тут - кут між векторами і в точці . Очевидно, що має найбільше значення при , тобто у напрямі в даній точці. Інакше кажучи, вектор в даній точці вказує напрям найбільшого зростання поля (функції ) у цій точці, а є швидкість зростання функції в цьому напрямі. Таким чином, вектор не залежить від вибору системи координат, а його модуль і напрям у кожній точці визначається самою функцією .

5. Потенціальне поле

Означення. Векторне поле називається потенціальним в області , якщо воно збігається в області з полем градієнта деякого скалярного поля :

.(9)

Функція називається скалярним потенціалом векторного поля . Якщо , то із рівності (9) випливає, що

.

Інколи потенціалом векторного поля називають таку функцію , що .

Розглянемо, наприклад, поле тяжіння точкової маси , розміщеної на початку координат. Воно описується вектор-функцією ( - гравітаційна стала, ). З такою силою діє це поле на одиничну масу, розміщену в точці . Поле тяжіння є потенціальним. Його можна подати у вигляді градієнта скалярної функції , яка називається ньютонівським потенціалом поля тяжіння точкової маси . Дійсно

.

Аналогічно , звідси

.

Далі, розглянемо ще один приклад. Нехай задано електричне поле точкового заряду , розміщеного на початку координат. Воно описується в точці вектором напруженості

.

Це поле також є потенціальним полем. Його можна подати у вигляді . Функція називається потенціалом електричного поля точкового заряду .

Поверхні рівня потенціала називаються еквіпотенціальними поверхнями.

6. Дивергенція

Означення. Дивергенцією векторного поля називається скалярна функція

.

Слово «дивергенція» означає «розбіжність».

Дивергенція характеризує густину джерел даного векторного поля в розглянутій точці.

Розглянемо, наприклад, електричне поле точкового заряду , розміщеного в початку координат:

,

.

Оскільки , і аналогічно , то

(при ). Цей результат означає відсутність поля у довільній точці, крім початку координат. В початку координат .

7. Ротор

Означення. Ротором (або вихором) векторного поля

називається вектор-функція

.

Зокрема, для плоского поля маємо

.

Розглянемо тверде тіло, яке обертається навколо осі із сталою кутовою швидкістю (рис. 1).

Рисунок 1 - Тверде тіло, яке обертається навколо осі

Векторне поле швидкостей точок цього тіла можна подати у вигляді

.

Знайдемо ротор поля швидкостей :

.

Таким чином, є сталим вектором, напрямленим уздовж осі обертання , а його модуль дорівнює подвоєній кутовій швидкості обертання тіла:

.

Розглянемо потенціальне поле . Його потенціал . Обчислимо ротор цього поля:

.

Взагалі, ротор довільного потенціального поля дорівнює нулю (див. підрозділ 2). Тому кажуть, що потенціальне поле є безвихровим.

8. Соленоїдальне поле

Векторне поле називається соленоїдальним в області , якщо в цій області . Оскільки характеризує густину джерел поля , то в тій області, де поле соленоїдальне, немає джерел цього поля.

Наприклад, електричне поле точкового заряду соленоїдальне (задовольняє умову ) всюди поза точкою, де знаходиться заряд (в цій точці ). Векторні лінії соленоїдального поля не можуть починатися або закінчуватися на межі області, або бути замкненими кривими. Прикладом соленоїдального поля з замкненими векторними лініями є магнітне поле, яке створюється струмом у провіднику.

Якщо векторне поле можна подати як ротор деякого векторного поля , тобто , то вектор - функція називається векторним потенціалом поля .

Можна перевірити (див. докладніше п. 2), що , тобто поле є соленоїдальним.

Довільне векторне поле можна подати у вигляді суми потенціального і соленоїдального полів.

9. Оператор Гамільтона

Згадаємо, що символ називається оператором частинної похідної по . Під добутком цього оператора на функцію розумітимемо частинну похідну , тобто . Аналогічно, і - оператори частинних похідних по і по .

Введемо векторний оператор «набла» або оператор Гамільтона:

.

За допомогою цього символічного (операторного) «вектора» зручно записувати і виконувати операції векторного аналізу.

У результаті множення вектора на скалярну функцію отримуємо :

.

Скалярний добуток вектора на вектор - функцію дає :

.

Векторний добуток вектора на вектор - функцію дає :

.

10. Нестаціонарні поля

Нехай в області визначено нестаціонарне скалярне поле : величина є функцією точки і часу . Приклад такого поля - змінний з часом розподіл температури в будь-якому середовищі (наприклад, в потоці рідини). Розглянемо точку , яка рухається в області (частинку рідини). Координати точки (частинки) змінюються з часом за відомим законом . Величина в рухомій точці є складеною функцією :

.

Обчислимо похідну по цієї функції (вона називається повною похідною). За правилом диференціювання складеної функції знаходимо

.

Вводячи в точці вектор швидкості , отримуємо

Або

.(11)

Аналогічно, якщо в області задано нестаціонарне векторне поле , то для рухомої точки векторна величина є складеною функцією : . Повну похідну по для кожної координати вектор - функції можна обчислити за формулою (11). Помноживши результати на базисні вектори і складаючи, отримуємо

.(12)

У формулах (11) і (12) доданки і виражають швидкості зміни величин та з часом при фіксованих координатах, тобто характеризують локальні зміни цих величин, і тому називаються локальними похідними. Доданки і утворюються за рахунок зміни координат точки, її руху (конвекції). Тому ці доданки у виразах повних похідних називаються конвективними похідними.

Локальні похідні характеризують нестаціонарність розглянутого поля у даній точці простору. Конвективні похідні характеризують неоднорідність поля у даний момент часу.

Размещено на Allbest.ru


Подобные документы

  • Диференціальні операції другого порядку. Потік векторного поля. Формула Остроградського-Гаусса в векторній формі. Властивості соленоїдального поля. Інваріантне означення дивергенції. Формула Стокса у векторній формі. Властивості потенціального поля.

    реферат [237,9 K], добавлен 15.03.2011

  • Изложение теории поля с помощью векторного анализа и составление пособия. Циркуляция векторного поля. Оператор Гамильтона и векторные дифференциальные операции второго порядка. Простейшие векторные поля. Применение теории поля в инженерных задачах.

    дипломная работа [190,2 K], добавлен 09.10.2011

  • Математическое объяснение понятия и свойств скалярного поля. Формулы расчета нормали к поверхности. Вычисление потока векторного поля через прямой круговой цилиндр с заданным радиусом основания. Доказательство теорем Остроградского-Гаусса и Стокса.

    реферат [264,0 K], добавлен 11.02.2011

  • Изучение теории поля с помощью векторного анализа. Векторные поля на плоскости и векторные линии. Вращение, вычисление и свойства дивергенции. Свойство аддитивности циркуляции полей. Ротор и его основные свойства. Рассмотрение формул Грина и Стокса.

    курсовая работа [649,8 K], добавлен 18.12.2011

  • Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.

    курсовая работа [1,2 M], добавлен 09.12.2008

  • Определение понятия поверхностного интеграла первого и второго рода, их основные свойств, примеры вычисления и его перевода в обыкновенный двойной. Рассмотрение потока векторного поля через поверхность, как механического смысла поверхностного интеграла.

    контрольная работа [157,6 K], добавлен 24.01.2011

  • Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.

    контрольная работа [392,3 K], добавлен 14.12.2012

  • Найти векторные линии в векторном поле. Вычислить длину дуги линии. Вычислить поток векторного поля через поверхность. Найти все значения корня. Представить в алгебраической форме.

    лабораторная работа [31,7 K], добавлен 17.08.2002

  • Побудова дотичної площини та нормалі до поверхні. Геометричний зміст диференціала функції двох змінних. Поняття скалярного поля, зв'язок між градієнтом і похідною в даній точці. Формула Тейлора для функції двох змінних та її локальні екстремуми.

    реферат [713,9 K], добавлен 14.05.2011

  • Сущность математической теории скалярных и векторных полей, ее основные понятия и определения. Характерные черты и отличительные признаки скалярных и векторных полей, доказательства их главных теорем.

    лекция [121,6 K], добавлен 11.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.