Диференціальні операції в скалярних і векторних полях. Основні поняття і формули
Дослідження особливостей скалярного та векторного полів. Похідна за напрямом. Градієнт скалярного поля, потенціальне поле. Сутність дивергенції, яка характеризує густину джерел даного векторного поля в розглянутій точці. Ротор або вихор векторного поля.
Рубрика | Математика |
Вид | реферат |
Язык | украинский |
Дата добавления | 06.03.2011 |
Размер файла | 244,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Диференціальні операції в скалярних і векторних полях. Основні поняття і формули
1. Скалярне поле
Нехай - область у тривимірному просторі (або на площині). Кажуть, що в області задано скалярне поле, якщо кожній точці поставлено у відповідність деяке число .
Прикладами скалярних полів є поле температури даного тіла, поле густини даного неоднорідного середовища, поле вологості повітря, поле атмосферного тиску, поле потенціалів заданого електростатичного поля тощо.
Поверхня (лінія), на якій функція набуває одне й те саме значення, називається поверхнею (лінією) рівня скалярного поля (наприклад, поверхні або лінії постійної температури). Надаючи різних постійних значень: , отримаємо сім'ю поверхонь (ліній) рівня даного скалярного поля.
Фізичні скалярні поля не залежать від вибору системи координат: величина є функцією лише точки і, можливо, часу (нестаціонарні поля).
Якщо в просторі ввести прямокутну систему координат , то точка у цій системі координат матиме певні координати і скалярне поле стане функцією цих координат: .
2. Векторне поле
Кажуть, що в області задано векторне поле, якщо кожній точці поставлено у відповідність деякий вектор .
Фізичні приклади векторних полів: електричне поле системи електричних зарядів, яке характеризується в кожній точці вектором напруженості ; магнітне поле, утворене електричним струмом і яке характеризується в кожній точці вектором магнітної індукції ; поле тяжіння, утворене системою мас і яке характеризується в кожній точці вектором сили тяжіння , що діє в цій точці на одиничну масу; поле швидкостей потоку рідини, яке описується в кожній точці вектором швидкості .
Зручною геометричною характеристикою векторного поля є векторні лінії - криві, в кожній точці яких вектор напрямлений по дотичній до кривої. Векторні лінії поля тяжіння, електричного і магнітного полів називається силовими лініями, а поля швидкостей - лініями струму.
Нехай векторна лінія, яка проходить через точку , описується рівнянням , де - параметр. Умова колінеарності вектора поля і дотичного вектора в довільній точці цієї лінії має вигляд
,(1)
де - деяке число. Умову (1) можна записати також у вигляді
(2)
або, помноживши на , у вигляді
.(3)
Кожне із рівнянь (1) - (3) є диференціальним рівнянням векторних ліній у векторній формі і визначає множину векторних ліній. Конкретна векторна лінія, яка проходить через задану точку , визначається додатковою умовою
,(4)
де - радіус-вектор точки .
Фізичні векторні поля не залежать від системи координат: в кожній точці вектор повністю визначається своїм модулем і напрямом. Якщо в просторі введена прямокутна система координат , то векторне поле описується вектор-функцією трьох змінних або трьома скалярними функціями - її координатами:
.
Оскільки в прямокутних координатах , то векторне рівняння (3) для векторних ліній еквівалентне системі диференціальних рівнянь
,(5)
а додаткове векторне рівняння (4) еквівалентне таким умовам:
,(6)
де - координати точки .
3. Похідна за напрямом
Скалярне і векторне поля
і
Називаються диференційованими разів, якщо функції
диференційовані разів. Надалі розглядатимемо поля, диференційовані потрібне нам число разів.
Нехай - скалярне поле, задане в області , - одиничний фіксований вектор; - фіксована точка; - довільна точка із , відмінна від і така, що вектор колінеарний . Нехай, далі, - величина напрямленого відрізка (вона дорівнює його довжині , якщо напрям вектора збігається з напрямом вектора , і дорівнює - , якщо вектори і є протилежними).
Означення. Число називається похідною скалярного поля (функції ) в точці за напрямом і позначається символом .
Похідна за напрямом є швидкістю зміни функції за напрямом в точці .
Якщо в прямокутній системі координат , то
.(7)
Зокрема, якщо вектор збігається з одним із ортів або , то похідна за напрямком збігається з відповідною частинною похідною. Наприклад, якщо , то
.
Аналогічно визначається похідна за напрямом векторного поля.
Означення. Вектор називається похідною векторного поля (вектор-функції ) в точці за напрямом і позначається символом .
Якщо в прямокутній системі координат , то
.
4. Градієнт скалярного поля
скалярне векторне поле дивергенція
Означення. Градієнтом скалярного поля називається вектор-функція
.
Із рівності (7) випливає, що
,(8)
Звідси , оскільки .
Тут - кут між векторами і в точці . Очевидно, що має найбільше значення при , тобто у напрямі в даній точці. Інакше кажучи, вектор в даній точці вказує напрям найбільшого зростання поля (функції ) у цій точці, а є швидкість зростання функції в цьому напрямі. Таким чином, вектор не залежить від вибору системи координат, а його модуль і напрям у кожній точці визначається самою функцією .
5. Потенціальне поле
Означення. Векторне поле називається потенціальним в області , якщо воно збігається в області з полем градієнта деякого скалярного поля :
.(9)
Функція називається скалярним потенціалом векторного поля . Якщо , то із рівності (9) випливає, що
.
Інколи потенціалом векторного поля називають таку функцію , що .
Розглянемо, наприклад, поле тяжіння точкової маси , розміщеної на початку координат. Воно описується вектор-функцією ( - гравітаційна стала, ). З такою силою діє це поле на одиничну масу, розміщену в точці . Поле тяжіння є потенціальним. Його можна подати у вигляді градієнта скалярної функції , яка називається ньютонівським потенціалом поля тяжіння точкової маси . Дійсно
.
Аналогічно , звідси
.
Далі, розглянемо ще один приклад. Нехай задано електричне поле точкового заряду , розміщеного на початку координат. Воно описується в точці вектором напруженості
.
Це поле також є потенціальним полем. Його можна подати у вигляді . Функція називається потенціалом електричного поля точкового заряду .
Поверхні рівня потенціала називаються еквіпотенціальними поверхнями.
6. Дивергенція
Означення. Дивергенцією векторного поля називається скалярна функція
.
Слово «дивергенція» означає «розбіжність».
Дивергенція характеризує густину джерел даного векторного поля в розглянутій точці.
Розглянемо, наприклад, електричне поле точкового заряду , розміщеного в початку координат:
,
.
Оскільки , і аналогічно , то
(при ). Цей результат означає відсутність поля у довільній точці, крім початку координат. В початку координат .
7. Ротор
Означення. Ротором (або вихором) векторного поля
називається вектор-функція
.
Зокрема, для плоского поля маємо
.
Розглянемо тверде тіло, яке обертається навколо осі із сталою кутовою швидкістю (рис. 1).
Рисунок 1 - Тверде тіло, яке обертається навколо осі
Векторне поле швидкостей точок цього тіла можна подати у вигляді
.
Знайдемо ротор поля швидкостей :
.
Таким чином, є сталим вектором, напрямленим уздовж осі обертання , а його модуль дорівнює подвоєній кутовій швидкості обертання тіла:
.
Розглянемо потенціальне поле . Його потенціал . Обчислимо ротор цього поля:
.
Взагалі, ротор довільного потенціального поля дорівнює нулю (див. підрозділ 2). Тому кажуть, що потенціальне поле є безвихровим.
8. Соленоїдальне поле
Векторне поле називається соленоїдальним в області , якщо в цій області . Оскільки характеризує густину джерел поля , то в тій області, де поле соленоїдальне, немає джерел цього поля.
Наприклад, електричне поле точкового заряду соленоїдальне (задовольняє умову ) всюди поза точкою, де знаходиться заряд (в цій точці ). Векторні лінії соленоїдального поля не можуть починатися або закінчуватися на межі області, або бути замкненими кривими. Прикладом соленоїдального поля з замкненими векторними лініями є магнітне поле, яке створюється струмом у провіднику.
Якщо векторне поле можна подати як ротор деякого векторного поля , тобто , то вектор - функція називається векторним потенціалом поля .
Можна перевірити (див. докладніше п. 2), що , тобто поле є соленоїдальним.
Довільне векторне поле можна подати у вигляді суми потенціального і соленоїдального полів.
9. Оператор Гамільтона
Згадаємо, що символ називається оператором частинної похідної по . Під добутком цього оператора на функцію розумітимемо частинну похідну , тобто . Аналогічно, і - оператори частинних похідних по і по .
Введемо векторний оператор «набла» або оператор Гамільтона:
.
За допомогою цього символічного (операторного) «вектора» зручно записувати і виконувати операції векторного аналізу.
У результаті множення вектора на скалярну функцію отримуємо :
.
Скалярний добуток вектора на вектор - функцію дає :
.
Векторний добуток вектора на вектор - функцію дає :
.
10. Нестаціонарні поля
Нехай в області визначено нестаціонарне скалярне поле : величина є функцією точки і часу . Приклад такого поля - змінний з часом розподіл температури в будь-якому середовищі (наприклад, в потоці рідини). Розглянемо точку , яка рухається в області (частинку рідини). Координати точки (частинки) змінюються з часом за відомим законом . Величина в рухомій точці є складеною функцією :
.
Обчислимо похідну по цієї функції (вона називається повною похідною). За правилом диференціювання складеної функції знаходимо
.
Вводячи в точці вектор швидкості , отримуємо
Або
.(11)
Аналогічно, якщо в області задано нестаціонарне векторне поле , то для рухомої точки векторна величина є складеною функцією : . Повну похідну по для кожної координати вектор - функції можна обчислити за формулою (11). Помноживши результати на базисні вектори і складаючи, отримуємо
.(12)
У формулах (11) і (12) доданки і виражають швидкості зміни величин та з часом при фіксованих координатах, тобто характеризують локальні зміни цих величин, і тому називаються локальними похідними. Доданки і утворюються за рахунок зміни координат точки, її руху (конвекції). Тому ці доданки у виразах повних похідних називаються конвективними похідними.
Локальні похідні характеризують нестаціонарність розглянутого поля у даній точці простору. Конвективні похідні характеризують неоднорідність поля у даний момент часу.
Размещено на Allbest.ru
Подобные документы
Диференціальні операції другого порядку. Потік векторного поля. Формула Остроградського-Гаусса в векторній формі. Властивості соленоїдального поля. Інваріантне означення дивергенції. Формула Стокса у векторній формі. Властивості потенціального поля.
реферат [237,9 K], добавлен 15.03.2011Изложение теории поля с помощью векторного анализа и составление пособия. Циркуляция векторного поля. Оператор Гамильтона и векторные дифференциальные операции второго порядка. Простейшие векторные поля. Применение теории поля в инженерных задачах.
дипломная работа [190,2 K], добавлен 09.10.2011Математическое объяснение понятия и свойств скалярного поля. Формулы расчета нормали к поверхности. Вычисление потока векторного поля через прямой круговой цилиндр с заданным радиусом основания. Доказательство теорем Остроградского-Гаусса и Стокса.
реферат [264,0 K], добавлен 11.02.2011Изучение теории поля с помощью векторного анализа. Векторные поля на плоскости и векторные линии. Вращение, вычисление и свойства дивергенции. Свойство аддитивности циркуляции полей. Ротор и его основные свойства. Рассмотрение формул Грина и Стокса.
курсовая работа [649,8 K], добавлен 18.12.2011Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.
курсовая работа [1,2 M], добавлен 09.12.2008Определение понятия поверхностного интеграла первого и второго рода, их основные свойств, примеры вычисления и его перевода в обыкновенный двойной. Рассмотрение потока векторного поля через поверхность, как механического смысла поверхностного интеграла.
контрольная работа [157,6 K], добавлен 24.01.2011Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.
контрольная работа [392,3 K], добавлен 14.12.2012Найти векторные линии в векторном поле. Вычислить длину дуги линии. Вычислить поток векторного поля через поверхность. Найти все значения корня. Представить в алгебраической форме.
лабораторная работа [31,7 K], добавлен 17.08.2002Побудова дотичної площини та нормалі до поверхні. Геометричний зміст диференціала функції двох змінних. Поняття скалярного поля, зв'язок між градієнтом і похідною в даній точці. Формула Тейлора для функції двох змінних та її локальні екстремуми.
реферат [713,9 K], добавлен 14.05.2011Сущность математической теории скалярных и векторных полей, ее основные понятия и определения. Характерные черты и отличительные признаки скалярных и векторных полей, доказательства их главных теорем.
лекция [121,6 K], добавлен 11.02.2010