Векторные линии в векторном поле

Найти векторные линии в векторном поле. Вычислить длину дуги линии. Вычислить поток векторного поля через поверхность. Найти все значения корня. Представить в алгебраической форме.

Рубрика Математика
Вид лабораторная работа
Язык русский
Дата добавления 17.08.2002
Размер файла 31,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Вариант 9

1. Найти векторные линии в векторном поле

Решение:

Векторные линии - это линии, в каждой точке которых вектор поля является касательным

Для нахождения векторных линий поля

решим дифференциальное уравнение:

Имеем

-9xdx=4ydy

Векторные линии представляют собой семейство эллипсов

2. Вычислить длину дуги линии ;

Решение:

Найдем производные

;

Длина дуги кривой в параметрических координатах равна:

3. Вычислить поток векторного поля через поверхность

Решение:

По определениюпотока векторного поля П, имеем

, где - единичный нормальный вектор к поверхности.

Вычислим . Как известно, если уравнение поверхности , то единичный нормальный вектор

Тогда поток векторного поля

Где часть круга радиуса R=1 в плоскости Оху с центром в начале координат, ограниченная условиями

Введем полярные координаты ;

Получим

4. Найти все значения корня

Решение:

Пусть z=1=1+0i

Arg z=0; |z|=1

По формуле корней из комплексного числа, имеем

где k=0,1,2,3

Получим

Ответ: 4 корня - 1;i;-i;-1

5. Представить в алгебраической форме Ln(-1-i)

Решение:

Из определения логарифма комплексного числа Lnz=ln|z|+i argz


Подобные документы

  • Изложение теории поля с помощью векторного анализа и составление пособия. Циркуляция векторного поля. Оператор Гамильтона и векторные дифференциальные операции второго порядка. Простейшие векторные поля. Применение теории поля в инженерных задачах.

    дипломная работа [190,2 K], добавлен 09.10.2011

  • Изучение теории поля с помощью векторного анализа. Векторные поля на плоскости и векторные линии. Вращение, вычисление и свойства дивергенции. Свойство аддитивности циркуляции полей. Ротор и его основные свойства. Рассмотрение формул Грина и Стокса.

    курсовая работа [649,8 K], добавлен 18.12.2011

  • Определение алгебраической линии на плоскости. Теорема о независимости порядка линии от выбора аффиной системы координат. Классификация алгебраической линии. Понятие алгебраической линии на плоскости и окружности как составляющих метода координат.

    курсовая работа [197,3 K], добавлен 29.09.2014

  • Специальные векторные поля. Теорема Стокса. Потенциальное, соленоидальное поле. Теорема Остроградского-Гаусса. Поток и определение вектора, направленного в отрицательную сторону оси. Дивергенция, свойства и интенсивностью векторной трубки.

    реферат [369,7 K], добавлен 23.02.2011

  • Дослідження особливостей скалярного та векторного полів. Похідна за напрямом. Градієнт скалярного поля, потенціальне поле. Сутність дивергенції, яка характеризує густину джерел даного векторного поля в розглянутій точці. Ротор або вихор векторного поля.

    реферат [244,3 K], добавлен 06.03.2011

  • Операции в скалярных и векторных полях. Наиболее распространенные типы векторных полей и задачи, которые возникают при изучении этих полей. Потенциальное, гармоническое и соленоидальное векторное поле. Векторный потенциал поля. Задачи Дирихле и Неймана.

    курсовая работа [294,8 K], добавлен 07.11.2013

  • Топографические и лучевые векторные диаграммы. Анализ и расчет цепей с синусоидальными напряжениями. Закон Ома в комплексной форме. Мощность при гармонических напряжениях и токах. Комплексные алгебраические уравнения, составленные по законам Кирхгофа.

    лекция [905,1 K], добавлен 04.09.2014

  • Определение понятия поверхностного интеграла первого и второго рода, их основные свойств, примеры вычисления и его перевода в обыкновенный двойной. Рассмотрение потока векторного поля через поверхность, как механического смысла поверхностного интеграла.

    контрольная работа [157,6 K], добавлен 24.01.2011

  • Математическое объяснение понятия и свойств скалярного поля. Формулы расчета нормали к поверхности. Вычисление потока векторного поля через прямой круговой цилиндр с заданным радиусом основания. Доказательство теорем Остроградского-Гаусса и Стокса.

    реферат [264,0 K], добавлен 11.02.2011

  • Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.

    контрольная работа [329,5 K], добавлен 19.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.