Систематичний відбір

Оцінювання середнього та сумарного значення популяції. Порівняння систематичного відбору зі стратифікованим випадковим відбором. Популяції з "випадковим" порядком розміщення одиниць. Автокорельовані популяції. Оцінювання дисперсії за окремою вибіркою.

Рубрика Математика
Вид дипломная работа
Язык украинский
Дата добавления 12.08.2010
Размер файла 858,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Страта

Номер систематичної вибірки (k=8)

1

2

3

4

5

6

7

8

1

214500

306000

291178

274200

250000

224230

224308

215448

249983

2

173777

200000

194322

175879

175000

173058

163673

162425

177266,8

3

143140

156667

150750

148433

151774

155215

147700

144781

149807,5

4

127600

142800

140900

140000

145148

137400

132998

137526

138046,5

5

228148

127706

129400

127109

124365

124324

126280

122300

138704

6

116200

120000

120393

120021

117561

116876

116400

131253

119838

7

112000

116000

116000

116000

115000

115400

114497

115936

115104,1

8

110300

114766

121294

117000

112100

110000

110000

109600

113132,5

9

105000

110830

112144

108481

108000

108601

105493

105000

107943,6

10

108953

165544

114427

105200

122916

102865

105664

102900

116058,6

11

100800

102400

113340

101800

124400

100702

102567

105400

106426,1

12

102400

100400

101300

101000

100333

108470

99070

99800

101596,6

13

98433

99400

98957

100871

98719

105833

104889

101700

101100,3

14

96830

98100

98000

107589

96050

96000

130797

96193

102444,9

15

97700

94728

94600

94542

93929

93728

107275

93933

96304,38

16

93100

100850

95029

93000

93626

101800

92312

93610

95415,88

17

90000

93082

108632

101221

94304

92100

101150

90800

96411,13

18

87000

90000

88846

88697

92593

88400

88000

88800

89042

19

85500

96348

87483

88615

92728

86028

86000

86257

88619,88

20

84000

87073

85320

105548

97503

85800

85691

85120

89506,88

21

85170

120000

87893

83514

84134

83201

83080

83000

88749

22

82474

93489

82720

82530

102614

82800

82986

82080

86461,63

23

80000

84000

81777

80539

86759

81200

80800

80000

81884,38

24

79854

80000

80400

80000

113400

79350

80050

94375

85928,63

25

78400

79000

81268

79400

80800

79800

79532

86117

80539,63

26

76228

78075

77600

77985

77650

77359

79122

77096

77639,38

27

75733

77000

76149

76000

86069

78974

85351

95990

81408,25

28

74700

76400

75853

75000

76983

90305

87022

75528

78973,88

29

74000

74946

74961

99015

86590

84569

77300

74800

80772,63

30

84818

73587

77909

75210

79193

72400

73000

72110

76028,38

31

71050

72093

72200

72800

72800

71856

72174

71238

72026,38

32

70509

71400

71000

121762

71647

71397

72458

70750

77615,38

33

75129

70000

70800

70400

87400

74915

70000

70800

73680,5

34

69900

69731

73282

73792

69470

83568

69833

74300

72984,5

35

67681

69105

79079

76779

68550

71178

68033

72400

71600,63

36

67700

68400

71570

74400

78843

67400

67000

77141

71556,75

37

65659

66703

67217

66800

75000

72439

65400

66132

68168,75

38

65000

69320

65000

71800

65000

76890

66154

65500

68083

39

69600

65300

73111

65065

68457

69200

64400

65229

67545,25

40

63000

67200

71943

63652

66020

64400

63993

70740

66368,5

41

62900

63800

63800

62893

63200

63200

62697

63306

63224,5

42

63519

62500

62763

83643

62400

62095

65900

69725

66568,13

43

62364

61611

71443

61304

61300

61200

61908

65000

63266,25

44

92240

61400

68700

61355

61623

60468

61151

79534

68308,88

45

71233

61612

60800

61800

62000

60800

60910

60000

62394,38

46

58988

60374

63684

78065

60733

59000

59400

59400

62455,5

47

58400

111951

62227

58224

76761

58975

58000

58450

67873,5

48

57800

58500

62910

66981

71500

57400

57600

57800

61311,38

49

58354

57800

58871

58544

60217

56358

62763

57060

58745,88

50

55900

56800

57467

75196

55479

78122

69699

57527

63273,75

51

55350

56685

62369

55000

65300

59148

58400

71000

60406,5

52

61671

91516

61052

65277

56550

56850

73512

56000

65303,5

53

56467

54000

65700

73998

59781

55788

53530

53000

59033

54

52191

58700

57219

55441

53533

53300

52163

53879

54553,25

55

59391

52621

58086

55800

55500

52475

55818

52335

55253,25

56

51000

51713

59277

55347

51333

51600

53465

51857

53199

57

50527

54560

51000

51857

50859

50800

54540

50700

51855,38

58

53475

50500

50460

53426

93669

50000

55000

50800

57166,25

59

49517

71853

49400

49000

49214

75349

48594

49582

55313,63

60

47900

57499

48000

48992

48360

48400

50649

49105

49863,13

83852,88

88407,3

86154,58

86896,53

87045,67

83855,98

83469,18

83002,8

5120137

5031173

5304438

5169275

5213792

5222740

5031359

5008151

4980168

У кожній страті міститься 1 блок, тобто 8 домогосподарств.

Знайдемо середнє та дисперсію для всієї популяції:

Тоді дисперсія оцінки середнього для простої випадкової вибірки має вид:

.

Середнє значення систематичної вибірки має розподіл

~

Оцінка є незміщеною оцінкою для , дійсно .

Дисперсія систематичної вибірки дорівнює

Тепер знайдемо дисперсію одиниць, що належать до однієї і тієї самої страти:

Дисперсія оцінки середнього для стратифікованої випадкової вибірки

.

Отже, ми отримали такі результати:

.

Це означає, що

.

При наявності логарифмічної залежності між загальним доходом та номером домогосподарства систематичний відбір виявився точнішим за простий випадковий та стратифікований відбори.

Тепер розглянемо дані, в яких відсутній тренд. Використовуємо вибірки, добуті з 13-го стовпця коду. Цей стовбець має назву BUILTH і відповідає за період побудови домогосподарства.

В результаті дослідження даної вибірки, виявилось, що залежність між періодом побудови та номером домогосподарства відсутня. Лінійна регресія не значуща. На рисунку 2.2.2 представлена діаграма розсіювання та відсутність лінійної регресії.

Рис. 2.2.2 Діаграма розсіювання

Рівняння регресії: F-статистика: Лінійна регресія не значуща

Порівняємо дисперсії середнього періоду побудови домогосподарства при систематичному відборі кожного восьмого домогосподарства, простому випадковому відборі та стратифікованому відборі. Після отримання коду з 13-го стовпця (див. рис 2.1.3) запишемо дані в таблицю 2.2.2, розділивши на 60 страт.

Таблиця 2.2.2 Дані по 8-ми систематичним вибіркам

Страта

Номер систематичної вибірки (k=8)

1

2

3

4

5

6

7

8

1

5

7

5

2

7

5

4

2

4,625

2

6

7

1

5

7

1

5

6

4,75

3

7

2

6

3

3

2

7

5

4,375

4

6

2

7

8

2

4

3

3

4,375

5

4

5

7

5

5

6

4

8

5,5

6

4

6

4

5

7

7

3

2

4,75

7

3

5

5

5

4

7

4

7

5

8

5

4

5

5

5

7

6

6

5,375

9

4

4

4

4

4

3

5

2

3,75

10

7

7

5

7

5

1

2

6

5

11

1

6

5

2

7

2

6

2

3,875

12

5

3

7

6

7

3

7

7

5,625

13

5

2

5

6

1

7

4

5

4,375

14

4

7

6

5

5

6

7

5

5,625

15

2

4

5

4

5

4

2

7

4,125

16

5

7

5

5

5

7

3

4

5,125

17

5

5

2

5

5

6

3

7

4,75

18

7

7

3

2

7

5

5

2

4,75

19

5

7

5

5

2

3

4

7

4,75

20

1

5

7

8

5

4

3

2

4,375

21

3

7

4

5

7

5

7

5

5,375

22

4

5

7

5

2

6

5

5

4,875

23

4

3

5

5

5

6

5

5

4,75

24

7

2

5

4

1

4

5

2

3,75

25

7

7

7

7

5

4

4

2

5,375

26

6

5

5

2

5

4

3

4

4,25

27

2

5

4

7

2

5

7

1

4,125

28

5

5

6

2

7

4

4

4

4,625

29

4

4

6

5

7

6

4

2

4,75

30

4

4

4

5

3

6

5

7

4,75

31

4

2

7

6

5

5

5

4

4,75

32

4

7

7

2

7

5

5

7

5,5

33

5

7

7

6

7

5

4

2

5,375

34

2

6

5

5

2

6

5

5

4,5

35

4

3

4

2

5

1

3

5

3,375

36

8

5

4

5

6

3

7

3

5,125

37

5

3

5

5

2

7

7

6

5

38

6

4

6

5

3

4

2

4

4,25

39

1

7

7

6

1

6

5

7

5

40

4

2

7

7

5

1

3

5

4,25

41

7

6

6

2

2

3

4

5

4,375

42

5

3

5

4

7

2

5

4

4,375

43

5

5

2

4

6

5

3

4

4,25

44

7

3

5

4

5

5

5

6

5

45

5

6

7

5

5

6

5

4

5,375

46

7

2

7

7

3

7

5

5

5,375

47

3

4

4

5

5

4

6

1

4

48

3

6

6

4

5

1

2

4

3,875

49

6

7

3

7

2

3

4

6

4,75

50

7

5

7

5

2

4

3

2

4,375

51

2

1

2

6

4

5

3

3

3,25

52

3

7

5

5

7

5

4

4

5

53

7

7

7

4

4

5

4

1

4,875

54

3

1

6

7

7

6

5

8

5,375

55

4

7

5

3

3

7

5

3

4,625

56

3

3

5

3

5

5

1

7

4

57

4

6

4

2

6

5

5

5

4,625

58

3

5

2

4

7

6

3

2

4

59

5

3

5

5

5

5

3

4

4,375

60

4

3

7

3

3

5

7

6

4,75

4,55

4,75

5,18

4,7

4,63

4,62

4,4

4,4

279,25

273

285

311

282

278

277

264

264

Знайдемо середнє та дисперсію для всієї популяції:

Тоді дисперсія оцінки середнього для простої випадкової вибірки має вид:

.

Середнє значення систематичної вибірки має розподіл

~

Також отримали, що .

Дисперсія систематичної вибірки дорівнює

Тепер знайдемо дисперсію одиниць, що належать до однієї і тієї самої страти:

Дисперсія оцінки середнього для стратифікованої випадкової вибірки

.

Отже, ми отримали такі результати:

.

Це означає, що

.

При відсутності тренду систематичний відбір виявився ефективнішим ніж стратифікований відбір, але менш точним ніж простий випадковий відбір. Якщо порівняти дисперсії систематичної та простої випадкової вибірок, то виявиться що вони дуже мало відрізняються. При випадковому порядку розміщення одиниць систематичний відбір в середньому рівносильний простому випадковому відбору (останнє підтверджує теоретичні положення підрозділу 1.3).

Для підвищення точності систематичного відбору, при дослідженні періоду побудови домогосподарства, застосуємо стратифікований систематичний відбір. Основна його ідея розглядалась у підрозділі 1.9. Отже, всю популяцію, яка складається з 60-ти блоків (по 8 домогосподарств у кожному), ділимо на 2 страти. В першій страті розміщуються з 1-го по 32-й блоки (тобто 256 домогосподарств), а в другій - з 33-го по 60-й блоки (224 домогосподарства). З кожної страти здобуваємо систематичні вибірки кожної 8-ї одиниці. Всього комбінацій здобуття таких систематичних вибірок з двох страт - 64 (8 комбінацій з першої страти та 8 - з другої страти). Середнє значення стратифікованої систематичної вибірки рахується за формулою

,

де - це вага страти , а - середнє значення систематичної вибірки у страті .

Так як я буду розглядати 2 страти, то середнє значення стратифікованої систематичної вибірки має вигляд:

а для кожної систематичної вибірки у першій або другій страті своє.

Після розглядання всіх стратифікованих систематичних вибірок кожної 8-ї одиниці запишемо розподіл :

Також має місце рівність .

Дисперсія середнього стратифікованої систематичної вибірки дорівнює:

.

При застосуванні стратифікованого систематичного відбору для періоду побудови домогосподарства маємо наступні результати:

.

Це означає, що

.

При відсутності тренду стратифікований систематичний відбір є точнішим за простий випадковий та стратифікований відбори. Тобто стратифікований систематичний відбір дає більш точну оцінку ніж звичайний систематичний відбір.

Висновки

Вибірковий метод - метод дослідження, що дозволяє робити висновок про характер розподілу досліджуваних ознак популяції на основі розгляду деякої її частини (тобто вибірки). Прикладом вибіркових обстежень може бути визначення середнього рівня доходів населення, визначення переліку споживчих переваг, визначення рейтингу кандидата на виборах та інші. Існують різні методи вибіркового обстеження: простий випадковий відбір, стратифікований відбір, систематичний відбір, кластерний та інші. Для різних популяцій різні методи відбору можуть бути більш точними або менш точними.

Розглянемо простий, систематичний та стратифікований відбори. Простим випадковим відбором називається спосіб добування одиниць вибірки з одиниць популяції так, що кожна з вибірок має рівну імовірність бути відібраною. За допомогою таблиці або датчика випадкових чисел добуваємо вибірку обсягом .

Систематичний відбір полягає у тому, що з популяції, одиниці якої перенумеровані від 1 до , для здобуття вибірки обсягу спочатку навмання вибираємо будь-яку одиницю з перших одиниць популяції (наприклад, п'яту одиницю з 8-ми одиниць). Після вибору першої одиниці вибираємо кожну -ту одиницю популяції (тобто 10-ту, 15-ту, 20-ту, 25-ту,….,-ту). Таку вибірку називають систематичною вибіркою кожної -ї одиниці.

Стратифікований відбір полягає в тому, що вся популяція поділяється на менші під популяції (страти), які не мають спільних одиниць і кожна з яких внутрішньо однорідна. Потім за допомогою простого випадкового відбору з кожної страти здобувається вибірка. Такий відбір називається стратифікованим випадковим відбором. Наприклад, популяція з одиниць поділена на страт, по 8 одиниць у кожній страті. З кожної страти здобуваємо по 2 одиниці за допомогою таблиці або датчика випадкових чисел. В результаті отримаємо: в першій страті числа 2, 7; в другій страті - 13, 16; і т.д.

В роботі ставиться задача порівняння точності систематичного відбору, простого випадкового та стратифікованого відбору.

Для розв'язання цієї задачі використано наступні теоретичні положення.

1. Середнє значення систематичної вибірки є незміщеною оцінкою для середнього значення популяції .

(1)

2. Дисперсія середнього значення систематичної вибірки визначається формулою (2)

(2)

де дисперсія одиниць, які належать одній систематичній вибірці визначається формулою (3),

(3)

а дисперсія популяції визначається формулою (4)

(4)

3. Середнє значення для систематичної вибірки більш точне, ніж середнє для простої випадкової вибірки

тоді і тільки тоді, коли справедлива нерівність (5)

. (5)

4. Дисперсія середнього значення систематичної вибірки може визначатись й формулою (6)

, (6)

де - коефіцієнт кореляції між парами одиниць, що належать до однієї й тієї самої систематичної вибірки.

(7)

5. Дисперсія середнього значення систематичної вибірки може ще визначатись формулою (8)

, (8)

де дисперсія одиниць, що належать до однієї й тієї самої страти визначається формулою (9)

. (9)

Величина

. (10)

є коефіцієнтом кореляції між відхиленнями від середнього значення для страти по всім парам одиниць, що належать до однієї й тієї ж систематичної вибірки.

Зауважимо, що формули 2, 6, 8 - еквівалентні

6. Якщо в популяції одиниці розташовані навмання розглянемо всі скінчених популяцій, що утворюються за допомогою перестановок деякого набору чисел . Тоді в середньому по всім цим скінченим популяціям справедлива формула (11)

. (11)

Тобто, коли одиниці вибірки розташовані випадково систематичний відбір в середньому рівносильний простому випадковому відбору.

Якщо між деякими характеристиками популяції наявна лінійна залежність, то справедлива нерівність (12).

. (12)

Тобто, стратифікований відбір точніший за систематичний відбір, який в свою чергу точніший простого випадкового відбору.

В своїй роботі я порівнювала точність систематичного відбору, простого випадкового та стратифікованого відбору, користуючись програмою StatVillage.

StatVillage - це гіпотетичне місто, яке складається з окремих домогосподарств і використовується як база даних для студентів та аспірантів, що вивчають вибіркові методи.

Дані домогосподарств для StatVillage обирались навмання з результатів перепису сімей, що мешкали у місті Ванкувері, Британській Колумбії, Канаді у 1991 році. Сам перепис населення проходив шляхом анонімного анкетування. Бралися до уваги наступні характеристики:

· демографічні показники (розмір домогосподарства та його склад за віком та статтю);

· показники доходу (зайнятість, інвестиції, валові витрати, різні доходи домогосподарств та інші);

· житлові характеристики (тип житла, рік побудови, своє житло чи орендоване, оціночна вартість, щомісячні витрати на розміщення та інші);

· характеристика двох членів сім'ї, які відповідають за добробут сім'ї (вік, стать, професія, рідна мова, освіта, зайнятість і т.д;)

Домогосподарства були розташовані згідно з загальним доходом від найбільшого до найменшого.

Існують три конфігурації міста StatVillage: Maximal village - складається зі 128 блоків, Mini village - складається з 60 блоків, та Micro village - складається з 36 блоків.

Для того, щоб отримати дані з міста StatVillage, необхідно спочатку відмітити домогосподарства позначкою. Після чого натискаючи кнопку «Get the sample units», отримуємо код. Отриманий код містить стовпці, кожен з яких відповідає за окрему характеристику домогосподарства

Порівнювати точності систематичного, простого та стратифікованого відборів, я буду використовувати вибірки, добуті з 11 та 13 стовпців коду. Ці стовпці відповідають - загальним доходам домогосподарства (включають в себе заробітну плату, пенсії, дівіденти та відсотки за депозитами) та періоду побудови домогосподарства.

В результаті дослідження виявилося, що загальний дохід зменшується зі зростанням номеру домогосподарства. Логарифмічна регресія значуща. Для загального доходу систематичний відбір виявився точнішим за простий випадковий та стратифікований відбори.

При дослідженні періоду побудови домогосподарства виявилося, що будь-яка залежність відсутня. Лінійна регресія не значуща. Систематичний відбір виявився більш точним ніж стратифікований випадковий відбір, але менш точним у порівнянні з простим випадковим відбором. Але можна помітити, що дисперсії простої випадкової та систематичної відбірок відрізняються мало. Отже, коли одиниці вибірки розташовані випадково систематичний відбір майже рівносильний простому випадковому відбору.

Останню оцінку можна покращити, застосувавши стратифікований систематичний відбір. Для цього всю популяцію ділимо на 2 страти. З кожної страти здобуваємо систематичні вибірки. Всього комбінацій здобуття вибірок з обох страт - 64. Дисперсія середнього стратифікованої систематичної вибірки виявилась меншою за відповідну дисперсію звичайної систематичної вибірки. Отже стратифікований систематичний відбір є точнішим за простий випадковий та стратифікований відбори.

Ефективність систематичного відбору в порівнянні зі стратифікованим або простим випадковим відбором суттєво залежить від особливостей популяції. Існують такі популяції, в яких систематичний відбір дає високу точність, але є й такі, для яких простий випадковий відбір є більш точним ніж систематичний. В будь-якому випадку для того, щоб застосування систематичного відбору було ефективним, необхідно знати будову популяції, з якої проводиться відбір.

Систематичні вибірки зручно намічати та вилучати. У більшості досліджень як по штучним, так і по реальним популяціям, вони вигравали в точності у порівнянні зі стратифікованими випадковими вибірками. Недоліки систематичної вибірки полягають в тому, що її точність може виявитись невисокою, якщо існує несподівана періодичність, і в тому, що невідомий надійний метод оцінювання за даними вибірки. Але не дивлячись на це, систематичний відбір рекомендований у наступних ситуаціях.

1. Якщо одиниці популяції розташовані в основному навмання або якщо стратифікування в популяції намічено досить слабо. В цьому випадку систематичний відбір застосовується, оскільки він зручний і не можна розраховувати на виграш в точності. Є вибіркові оцінки похибки, зміщення яких знаходиться у допустимих границях.

2. Якщо застосовується стратифікування з великим числом страт і систематична вибірка вилучається незалежно з кожній страти. В цьому випадку вплив прихованої періодичності має тенденцію нейтралізуватися і можна одержати оцінку похибки, яка заздалегідь перевищена. При іншому способі можна скористатися лише половиною страт та вилучити з кожної страти по дві систематичні вибірки з незалежним випадковим початком відліку. Такий спосіб забезпечує незміщену оцінку похибки.

3. При підвідборі одиниць. В цьому випадку виявляється, що у більшості практичних додатків можна отримати незміщену оцінку похибки вибірки.

4. При вибірковому вивчені популяцій з варіацією неперервного характеру за умови, що оцінка похибки вибірки звичайно не вимагається. Якщо проводиться ряд обстежень такого типу, то може виявитись достатнім перевіряти похибки вибірки лише від випадку до випадку. Йейтс (1948) вказує, що можна робити таку перевірку за допомогою додаткових спостережень.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Кокрен У. Методы выборочного исследования. Пер. с англ. И.М. Сонина. Под ред. А.Г. Волкова. - М.: Статистика, 1976. - 440 с. с ил.

2. Черняк О.І. Техніка вибіркових досліджень. - К.: МІВВЦ, 2001. - 248 с.

3. Пархоменко В.М. Методи вибіркових обстежень. Навчальний посібник. - К.,2001. - 148 с.

4. Govindarajulu Z. “Elements of sampling theory and methods”

5. Sharon L. Lohr Sampling: Design and Analysis - Duxbury Press, 1999. - 253c.


Подобные документы

  • Обчислення оцінок основних статистичних характеристик: середнього значення, середнього квадратичного відхилення результатів, дисперсії розсіювання результатів вимірювань, коефіцієнта асиметрії. Перевірка наявніості похибок за коефіцієнтом Стьюдента.

    контрольная работа [245,5 K], добавлен 25.02.2011

  • Оцінювання параметрів розподілів. Незміщені, спроможні оцінки. Методи знаходження оцінок: емпіричні оцінки, метод максимальної правдоподібності. Означення емпіричної функції розподілу, емпіричні значення параметрів. Задача перевірки статистичних гіпотез.

    контрольная работа [57,2 K], добавлен 12.08.2010

  • Основні поняття математичної статистики. Оцінювання параметрів розподілів. Метод максимальної правдоподібності. Парадокси оцінок математичного сподівання та дисперсії, Байєса, методу найменших квадратів, кореляції, перевірки гіпотез та їх пояснення.

    дипломная работа [1,1 M], добавлен 12.08.2010

  • Вивчення закономірностей, властивих випадковим явищам. Комплекс заданих умов. Експериментальна перевірка випадкових явищ в однотипних умовах та необмежену кількість разів. Алгебра випадкових подій. Сутність, частота і ймовірність випадкової події.

    реферат [151,8 K], добавлен 16.02.2011

  • Класичний метод оцінювання розподілу вибірки, незміщені та спроможні оцінки, емпірична функція розподілу. Моделювання неперервних величин і критерій Смірнова. Сучасні методи прямокутних внесків, зменшення невизначеності та апріорно-емпіричних функцій.

    дипломная работа [1,9 M], добавлен 12.08.2010

  • Середні значення, характеристики варіаційного ряду, властивості, методи їх обчислення та оцінки. Наукова основа статистичного аналізу. Приклади вирішення задач на обчислення середнього арифметичного, перевірки гіпотез. Метод відліку від умовного нуля.

    контрольная работа [39,6 K], добавлен 25.12.2010

  • Дослідження основних статистичних понять та їх застосування в оціночній діяльності. Характеристика методів групування статистичних даних по якісним та кількісним прикметам. Вивчення алгоритму побудови інтервального ряду, розрахунок розмаху варіації.

    лекция [259,0 K], добавлен 07.02.2012

  • Зародження основних понять теорії ймовірностей. Розподіл ймовірностей Фішера-Снедекора, Пуассона та Стьюдента, їх характеристика та приклади. Емпірична функція розподілу. Точечний та інтервальний підходи до оцінювання невідомих параметрів розподілів.

    курсовая работа [1,7 M], добавлен 30.04.2009

  • Отримання аналогів теореми порівняння Колмогорова для класу функцій, що задаються обмеженнями на несиметричні норми старших похідних. Випадок класів, які задаються обмеженнями на декілька похідних. Означення екстремальної функції, її властивості.

    дипломная работа [1,4 M], добавлен 11.06.2017

  • Особливості реалізації алгоритмів Прима та Крускала побудови остового дерева у графі. Оцінка швидкодії реалізованого варіанта алгоритму. Характеристика різних методів побудови остовних дерев мінімальної вартості. Порівняння використовуваних алгоритмів.

    курсовая работа [177,3 K], добавлен 18.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.