Интересные примеры в метрических пространствах

В n-мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб.

Рубрика Математика
Вид задача
Язык русский
Дата добавления 07.05.2003
Размер файла 10,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Интересные примеры

в метрических пространствах:

1. В n-мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб. Действительно, если такой куб разбить на кубики с ребром , то вершины этих кубиков будут образовывать конечную -сеть в исходном кубе, а значит, и подавно, в любом множестве, лежащем внутри этого куба.

Единичная сфера S в пространстве l2 дает нам пример ограниченного, но не вполне ограниченного множества. Рассмотрим в S точки вида:

е1=(1, 0, 0, ..., 0, 0, ...),

е2=(0, 1, 0, ..., 0, 0, ...),

…………………………,

еn=(0, 0, 0, ..., 1, 0, ...),

………………………….

Расстояние между любыми двумя точками еn и ем (nm) равно . Поэтому последовательность {еi} и любая ее подпоследовательность не сходятся. Отсюда в S не может быть конечной -сети ни при каком <2/2.

Рассмотрим в l2 множество П точек

x=(x1, x2, , xn, ...),

удовлетворяющих условиям:

| x1|1, | x2|1/2, ,| xn|1/2n-1, ...

Это множество называется фундаментальным параллепипедом («гильбертовым кирпичем») пространства l2. Оно представляет собой пример бесконечномерного вполне ограниченного множества. Для доказательства его полной ограниченности поступим следующим образом.

Пусть >0 задано. Выберем n так, что 1/2n-1</2. Каждой точке x=(x1, x2, , xn, ...)

из П сопоставим точку x*=(x1, x2, , xn, 0, 0, ...)

из того же множества. При этом

(x,x*)<1/2n-1</2.

Множество П* точек вида x*=(x1, x2, , xn, 0, 0, ...) из П вполне ограничено (как ограниченное множество в n-мерном пространстве). Выберем в П* конечную /2-сеть. Она будет в то же время -сетью во всем П. Докажем это.

Доказательство: для , выберем n так, что 1/2n-1</2.

xП: x=(x1, x2, , xn, ...) сопоставим

x*=(x1, x2, , xn, 0, 0, ...) и x*П. При этом (x,x*)</2. Из пространства П выберем x**: (x*,x**)</2.

Тогда: (x,x**)(x,x*)+(x*,x**)</2+/2=.

Множество П* содержит точки вида x*=(x1, x2, , xn, 0, 0, ...), в этом множестве выберем конечную /2-сеть. Она будет -сетью в пространстве П, так как (x,x**)<.


Подобные документы

  • Множество: понятие, элементы, примеры. Разность двух множеств, их пересечение. Множество действительных, рациональных, иррациональных, целых и натуральных чисел, особенности изображения их на прямой. Общее понятие о взаимно однозначном соответствии.

    презентация [273,1 K], добавлен 21.09.2013

  • Способы решения логических задач типа "Кто есть кто?" методами графов, табличным способом, сопоставлением трех множеств; тактических, истинностных задач, на нахождение пересечения множеств или их объединения. Буквенные ребусы и примеры со звездочками.

    курсовая работа [622,2 K], добавлен 15.06.2010

  • Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.

    курсовая работа [192,3 K], добавлен 24.11.2009

  • Основные понятия и факты теории линейных операторов. Определение и примеры линейных операторов. Ограниченность и норма линейного оператора. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов.

    дипломная работа [240,7 K], добавлен 13.06.2007

  • Уравнение как равенство, содержащее неизвестное число. Примеры уравнений с одной переменной. Условия обращения уравнения в истинное числовое равенство – его решение (корень). Множество решений уравнения. Уравнение без решения (множество решений пусто).

    презентация [12,2 K], добавлен 20.12.2011

  • Определение, типы и примеры отношений, способы их задания; алгебраическая и геометрическая интерпретации. Разбиение на классы и фактор-множество. Смысл отношения эквивалентности. Теорема о равносильности определений. Отношения в школьной математике.

    курсовая работа [1,0 M], добавлен 01.10.2011

  • Лист (лента) Мёбиуса как топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве. История возникновения ленты Мёбиуса, её свойства, применение в геометрии и в повседневной жизни.

    реферат [5,1 M], добавлен 03.12.2014

  • Системы линейных уравнений и интерпретация их решений как пересечение гиперплоскостей в n-мерном координатном пространстве. Размерность и подпространства линейного пространства. Оптимизационные задачи линейного программирования. Суть симплекс-метода.

    курсовая работа [132,2 K], добавлен 10.01.2014

  • Бинарные отношения на множестве. Рефлективность, примеры рефлективности. Симметричность, транзитивность, отношение порядка. Примеры дестрибутивных и недестребутивных решеток. Основные определения и свойства теории структур. Операции над множествами.

    курсовая работа [64,0 K], добавлен 04.06.2015

  • Теория динамического программирования. Понятие об оптимальной подструктуре. Независимое и полностью зависимое множество вершин. Задача о поиске максимального независимого множества в дереве. Алгоритм Брона-Кербоша как метод ветвей, границ для поиска клик.

    реферат [224,1 K], добавлен 09.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.