Лист Мёбиуса

Лист (лента) Мёбиуса как топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве. История возникновения ленты Мёбиуса, её свойства, применение в геометрии и в повседневной жизни.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 03.12.2014
Размер файла 5,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

План

Введение

Историческая справка

Топология, как часть геометрии

Лента Мёбиуса, её свойства

Применение ленты Мёбиуса в геометрии

Заключение

Список использованной литературы

Введение

В своем реферате я постараюсь решить следующие задачи:

1. Изучить историю возникновения листа Мёбиуса, обычно называемого лентой Мёбиуса, её свойства.

2. Проведу разнообразные эксперименты с лентой Мёбиуса.

3. Покажу геометрическое применение ленты Мёбиуса.

4. Выясню, нашла ли лента Мёбиуса практическое применение в повседневной жизни.

Задача изучения различных свойств и нестандартных применений в наше время является довольно актуальной. Существует гипотеза, что наша Вселенная замкнута в эту самую ленту. Согласно теории относительности - чем больше масса, тем больше кривизна пространства. Более того, эта теория согласуется с предположением, что космический корабль, все время летающий прямо, может вернуться к месту старта, что подтверждает неограниченность и конечность Вселенной. Из этого можно сделать вывод о реальности теории зеркальных миров - ведь если астронавты совершат путешествие по ленте Мёбиуса и вернутся в исходную точку, то они превратятся в своих зеркальных двойников.

Кроме того, есть гипотеза, что спираль ДНК тоже является сама по себе фрагментом ленты Мёбиуса, и только поэтому генетический код так сложен для расшифровки и восприятия. Такой подход к структуре ДНК вполне логично объясняет причину наступления биологической смерти - спираль замыкается сама на себя и происходит самоуничтожение. Или аннигиляция, как подтверждают физики. Они также утверждают, что на свойствах ленты Мёбиуса основаны все оптические законы. В частности, отражение в зеркале - это своеобразный перенос во времени, краткосрочный, длящийся сотые доли секунды, ведь мы видим перед собой зеркального своего двойника.

В процессе работы над рефератом я использовал «Математические чудеса и тайны» М. Гарднера (стр. 43-48), «Курс наглядной геометрии» Е.С. Смирновой, 6 класс (стр. 63-67), «Современный словарь иностранных слов» (стр. 146, 468, 579, 612), «Наглядную геометрию» И.Ф. Шарыгина и Л.Н. Еранжиевой, 5-6 класс (стр. 69-72), «Энциклопедию для детей. Математика» (стр. 111-112), ресурсы Интернета.

1. Историческая справка

Таинственный и знаменитый лист Мёбиуса придумал в 1858 году немецкий геометр и астроном, профессор Лейпцигского университета Август Фердинанд Мёбиус (1790-1868 гг.), ученик «короля математиков» Гаусса.

Мёбиус был первоначально астрономом, как Гаусс и многие другие из тех, кому математика обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров XIX века.

В возрасте 68 лет ему удалось сделать поразительное открытие. Это открытие односторонних поверхностей, одна из которых - лист или лента Мёбиуса. В научных источниках говорится, что Мёбиус взял однажды бумажную ленту, повернул один её конец на пол-оборота (то есть на 180о), а потом склеил его с другим концом. То ли от скуки он это сделал, то ли научного интереса ради - теперь уже неизвестно. По одной из версий, открыть ленту Мёбиуса помогла служанка, сшившая неправильно концы ленты банта. Относится она к числу так называемых «математических неожиданностей». Работу, включающую сведения о ленте, Мёбиус отправил в Парижскую академию наук в 1858 году. Семь лет он дожидался рассмотрения своей работы, и, не дождавшись, опубликовал её результаты.

2. Топология, как часть геометрии

Геометрия - как известно, слово греческое, в переводе на русский язык означает землемерие, изучает свойства фигур. Как и любая наука, геометрия делится на разделы:

1. Планиметрия (от латинского планум - поверхность, плоскость) - раздел геометрии, изучающий свойства плоских фигур (треугольник, квадрат, круг, окружность и т.д.).

2. Стереометрия (от греческого стереос - пространство) - раздел геометрии, изучающий свойства пространственных (объёмных) фигур (шар, куб, параллелепипед и т.д.).

3. Топология (от греческого топос - место, местность) является одним из самых «молодых» разделов современной геометрии, в котором изучаются свойства таких фигур, которые не изменяются при деформациях (растяжение, сжатие), не допускающих разрывов и склеивания. Родоначальниками топологии были немецкий учёный Георг Кантор (1845 - 1918 гг.), Павел Сергеевич Александров (1896 - 1982 гг.).

С точки зрения топологии баранка и кружка одно и тоже. Сжимая и растягивая кусок резины можно перейти от одной из этих фигур к другой. А вот баранка и шар - уже будут разными объектами: чтобы сделать отверстие, надо разорвать баранку.

Среди букв русского алфавита есть топологически одинаковые фигуры

А-Д, Г-С, С-П, 3-Э, Т-У.

Лента Мёбиуса - тоже топологический объект. Это - простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве Rі. Попасть из одной точки этой поверхности в любую другую можно, не пересекая края.

3. Лента Мёбиуса, её свойства

Как сделать ленту Мёбиуса?

Возьмём прямоугольную бумажную полоску, перекрутим на пол-оборота один её конец и приклеим его к другому концу той же полоски. Эту модель и называют: «лента Мёбиуса». Обладает она интересными свойствами. Для того, чтобы узнать о них, мною проведены несколько экспериментов, в которых постарался ответить на вопросы:

1. Если начать закрашивать ленту Мёбиуса с одной стороны, не переходя через край, то какая часть ленты окажется закрашенной?

2. Что получится, если разрезать ленту Мёбиуса вдоль посередине?

3. Что получится, если разрезать ленту Мёбиуса вдоль, отступив треть от края?

4. Что получится, если перекрутить ленту дважды, а потом разрезать вдоль посередине?

И вот что у меня получилось:

1. У ленты Мёбиуса всего одна сторона. Убедимся в этом: возьмём кисть и краску, начнём постепенно окрашивать ленту в какой-нибудь цвет, начиная с любого места. После окончания лента у нас полностью окрашена. В книге «Что такое математика?» Рихард Курант и Герберт Роббинс писали: «Если кто-нибудь вздумает раскрасить «только одну» строну поверхности мёбиусовой ленты, пусть лучше сразу погрузит ее в ведро с краской».

2. Попробуем разрезать обычную цилиндрическую поверхность и лист Мёбиуса по средней линии

«Обычное» (цилиндрическое) кольцо распалось на два куска, а лента Мёбиуса превратится в одно перекрученное кольцо, причём оно перекручено дважды и вдвое длиннее, но уже. Еще удивительнее то, что полученное кольцо уже двустороннее.

3. Если разрезамть ленту Мёбиуса, отступая от края приблизительно на треть её ширины, то получаются две ленты, одна - более тонкая лента Мёбиуса, другая - длинная лента с двумя полуоборотами (такую ленту называют афганской).

4. При повороте на 360 градусов получим двустороннюю поверхность. Для закрашивания её непременно нужно перевернуть на другую сторону. При разрезании вдоль посередине получим два кольца, сцепленных между собой.

Интересны были и другие эксперименты с этим удивительным геометрическим явлением.

Приготовим лист Мёбиуса из достаточно широкой полоски и разрежем его так, чтобы линия разреза все время шла вдвое ближе к левому краю полоски, чем к правому (линия разреза обойдет лист Мёбиуса дважды).

Получаем два кольца: одно - лист Мёбиуса, другое - перекрученное на 360 градусов.

Вновь возьмём бумажную полоску; один ее конец перекрутим на полный оборот (на 360 градусов), приклеим к другому концу и разрежем получившуюся модель по средней линии. Получаем два одинаковых, сцепленных кольца, каждое из которых повёрнуто на 360 градусов.

Попробуем проделать в полоске щель и проденем сквозь неё один конец полоски. Склеим как на рисунке и разрежем.

Получили две отдельных ленты Мёбиуса.

А теперь попробуем склеить обычное кольцо и ленту Мёбиуса под прямым углом и разрежем по пунктирной линии.

Каков результат? Получилась квадратная рамка!

Можно говорить о следующих свойствах ленты Мёбиуса:

* Односторонность - топологическое свойство ленты Мёбиуса, характерное только для неё.

* Непрерывность - с топологической точки зрения круг неотличим от квадрата, потому что их легко преобразовать один в другой, не нарушая непрерывность. На листе Мёбиуса любая точка может быть соединена с другой точкой. Разрывов нет - непрерывность полная.

* Связность - чтобы разделить квадрат на две части, нам потребуется только один разрез. Но вот чтобы располовинить кольцо, потребуется уже два разреза. Что касается листа Мёбиуса, то количество связей меняется в зависимости от смены количества оборотов ленты: если один оборот - двусвязен и т.д.

* Ориентированность - свойство, отсутствующее у листа Мёбиуса. Так, если бы человек смог пропутешествовать по всем изгибам листа Мёбиуса, то когда он вернулся бы в исходную точку, он превратился бы в своё зеркальное отражение.

Таким образом, лента Мёбиуса - простейшая односторонняя поверхность с краем. Попасть из одной точки этой поверхности в любую другую можно, не пересекая края.

Ленту Мёбиуса иногда называют прародителем символа бесконечности ?, так как находясь на поверхности ленты Мёбиуса, можно было бы идти по ней вечно. Правда, это не соответствует действительности, ведь символ ? использовался для обозначения бесконечности в течение двух столетий до открытия ленты Мёбиуса.

Другое похожее множество - вещественная проективная плоскость. Если проколоть отверстие в вещественной проективной плоскости, тогда то, что останется, будет листом Мёбиуса. С другой стороны, если приклеить диск к ленте Мёбиуса, совмещая их границы, то результатом будет проективная плоскость. Чтобы визуализировать это, полезно деформировать ленту Мёбиуса так, чтобы ее граница стала обычным кругом. Такую фигуру называют «пересечённая крышка». Пересечённая крышка может также означать ту же фигуру с приклеенным диском, то есть погружение проективной плоскости в трехмерное пространство R3.

4. Применение ленты Мёбиуса в геометрии

Полоска для создания ленты Мёбиуса должна быть узкой и длинной, с возможно большим отношением длины к ширине. Скажем, из квадратного листа ленты Мёбиуса не сделаешь.

Это верно, но с одной оговоркой, которую легко недооценить: ограничения на размер имеют значение лишь в том случае, когда бумагу запрещается «мять». Если же мять бумагу не запрещается, то ленту Мёбиуса можно склеить не только из квадрата, но из прямоугольника любых размеров - склеиваемые стороны могут быть во сколько угодно раз длиннее несклеиваемых. Сделать это можно так (рис. 1-3). Сложим прямоугольный лист в гармошку, перегнув его чётное число раз. Затем из этой гармошки, как из толстой бумажной полоски, склеим ленту Мёбиуса, вставляя соответствующие части гармошки друг в друга. На рисунке видно, что лист бумаги, из которого склеена лента Мёбиуса, оказался смятым.

Допустим, что бумажную полоску можно изгибать, но не мять. Примем ширину полоски за единицу. Ясно, что чем длиннее полоска, тем легче склеить из неё ленту Мёбиуса. Таким образом, существует такое число л, что из полоски длины больше л ленту Мёбиуса склеить можно, а из полоски длины меньше л - нельзя, Что будет для полоски, длина которой в точности равна л, нас не интересует. Очень хотелось бы найти это л.

Удивительно, но решение этой задачи до сих пор не известно.

Развертывающаяся поверхность

Легко понять, что запрещение мять бумагу значительно ограничивает возможность манипулировать бумажным листом. Например, лист бумаги, не помяв, можно свернуть в трубку или сложить «без складки» пополам, но нельзя сложить вчетверо. Из листа бумаги, не смяв его, можно сделать конус («фунтик»), но нельзя сделать сферу или даже её кусочек: попробуйте прижать лист бумаги к глобусу, и обязательно появятся складки. Как видно, листу бумаги можно придать далеко не всякую форму. Поверхности, которые можно сделать из листа бумаги, изгибая, но не сминая его, математики называют развёртывающимися. Примеры развёртывающихся поверхностей показаны на рис. 4. Конечно, в математике развёртывающиеся поверхности определяются не так: в математическом языке отсутствуют слова «бумага», «сминать», «сделать».

топологический неориентируемый трехмерный мёбиус

Раз требование не мять бумагу так важно, посмотрим, каков его математический смысл.

Через каждую точку A развёртывающейся поверхности, не лежащую на её границе, проходит лежащий на поверхности отрезок, не кончающийся в A. Иначе говоря, в каждой точке к развёртывающейся поверхности (изогнутому, но не смятому листу бумаги) можно приложить спицу так, чтобы она прилегала к поверхности на некотором протяжении по обе стороны от взятой точки. Такой отрезок называется образующей поверхностью. Условимся, что это название относится только к отрезкам максимальной длины, целиком лежащим на поверхности, то есть, к отрезкам, не содержащимся в бульших отрезках с этим свойством.

Если через точку А, не лежащую на границе поверхности, проходят две различные образующие, причём А не является концом ни одной из них, то достаточно маленький кусок поверхности, окружающий А, является плоским. В таком случае точку А мы будем называть плоской.

Если точка А, не лежащая на границе поверхности, является концом какой-нибудь образующей, скажем а, то окрестность точки А устроена так. Через точку А проходит единственная не кончающаяся в ней образующая, скажем, в (рис. 5). Эта образующая разделяет поверхность на две части. С той стороны от образующей в, с которой находится образующая а, к образующей в прилегает плоский кусок, с другой стороны от в, сколь угодно близко от точки А, имеются не плоские точки. Точку А в этой ситуации мы будем называть полуплоской.

Подчеркнём, что если точка поверхности не является ни граничной, ни плоской, то через неё проходит единственная не кончающаяся в ней образующая, причём концы этой образующей лежат на границе поверхности.

Примеры

Лист бумаги, свёрнутый в трубочку или в фунтик, плоских и полуплоских точек не имеет. У трубочки образующие составляют семейство параллельных отрезков, у фунтика - семейство отрезков, веером расходящихся из одной точки. Возможны более сложные расположения образующих. Например, образующие и плоские точки развертывающейся поверхности, изображённой на рисунке 6а, показаны на рисунке 6б (на нём поверхность развёрнута в плоский лист бумаги): тонкие синие линии - образующие, а закрашенные области состоят из плоских точек.

Точки, лежащие на границе области плоских точек, являются либо граничными для всей поверхности, либо полуплоскими. Если поверхность сделана из бумажного многоугольника (скажем, из прямоугольника), то плоские точки составляют один или несколько плоских многоугольников, причём у каждого из этих многоугольников вершины лежат на границе поверхности, а стороны либо лежат на границе, либо состоят из полуплоских точек (см. ещё раз рисунок 6б).

Но вернёмся к вычислению л - нижней грани длин бумажных полосок ширины 1, из которых можно склеить несмятую ленту Мёбиуса.

Теорема 1: л ? р/2

Доказательство. Пусть лента Мёбиуса сделана из бумажной полоски длины l. Намотаем на неё длинную бумажную ленту. Эта лента (толщиной бумаги пренебрегаем) будет составлена из прямоугольников одинаковой длины, каждый из которых принимает форму нашей ленты Мёбиуса. Отметим на длинной ленте прямолинейные образующие и плоские точки (как на рисунке 6б). Получится что-то вроде рисунка 7.

Картина периодична: всё повторяется с периодом, равным 2. Можно сказать больше: при сдвиге влево или вправо на l картинка меняется, но строго определённым образом - она переворачивается (т.е. зеркально отражается в средней линии полоски). Области плоских точек представляют собой четырёхугольники (которые могут выродиться в треугольники), ограниченные двумя отрезками противоположных краёв ленты и двумя отрезками, проходящими по ленте. Части ленты, не попавшие в эти области, вымощены образующими, концы которых лежат на краях ленты. Всё это следует из свойств развёртывающихся поверхностей. Плоские участки также можно вымостить образующими, так что вся лента будет покрыта непрерывным семейством образующих (рис. 8). Образующие в одинаковых четырёхугольниках можно выбирать одинаковым образом, так что описанная выше периодичность сохранится.

Возьмём любую образующую из нашего семейства, скажем, [АВ]. Если симметрично отразить её в средней линии полоски и затем перенести в любую сторону (скажем, вправо) на l, то получится отрезок CD, который тоже является образующей из нашего семейства (рис. 9). Заметим (это важно), что |АС| + |BD| = 2 l. При наматывании нашей длинной ленты на ленту Мёбиуса образующие [АВ] и [CD] займут одинаковое положение. Причём точка А совместится с D, а точка В - с С; другими словами, отрезки АВ и CD составят в пространстве угол в 180°. Между [АВ] и [CD] располагается непрерывное семейство образующих. При движении от [АВ] к [CD] величина угла, который эти образующие составляют в пространстве с [АВ], непрерывно изменяется от 0° до 180°.

Возьмём любое n и найдём между [АВ] и [CD] такие образующие [А1В1],….,[Аn-1Вn-1], что величина угла между [АВ] и [AkBk] равна к.180°/n. Точки А1, …, Аn-1 в этом порядке лежат между А и С, а точки В1, …, Вn-1 - между В и D (см. рис. 10). Длина каждой из образующих больше или равна 1, а величина угла между пространственными положениями двух соседних образующих не меньше 180°/n.

Покажем, что каждая из сумм [АА1] + [ВВ1], [А1А2] + [В1В2], [Аn-1С] + [Bn-lD] не меньше длины а2n стороны правильного 2n-угольника, вписанного в окружность радиуса 1. Это видно на рисунке 11. На этом рисунке отрезки АкЕ и Ак+1Вк+1 равны по длине, параллельны и направлены в одну сторону, [AkF] = [АкН] = 1 и [FG] || [ЕВк] (рис. 11 сделан в предположении, что [Ак+1Вк+1] < [AkBk]; изменения, необходимые в случаях [Ак+1Вк+1] = [AkBk] и [Ак+1Вк+1] > [AkBk], очевидны). Мы видим, что [AkAk+l] + [BkBk+l] = [EBk+l] + [BkBk+l] ? [EBk] ? [FG] ? [FH] ? a2n (здесь |[AkAk+l], [BkBk+l], [EBk+l] - длины изображённых на рисунке 11 криволинейных отрезков; эти длины совпадают с длинами отрезков [AkAk+l], [BkBk+l] рисунка 10. Предпоследнее неравенство следует из того, что DFHG > 90°, а последнее - из того, что DFAkH ? 180°/n).

Итак, 21 = [АС] + [BD] = ([АА1] + [ВВ1]) + ([А1А2] + [В1В2]) + ... + ([Аn-1С] + [Bn-lD]) ? na2n, т.е. 2l при любом n не меньше половины периметра правильного 2n-угольника, вписанного в окружность радиуса 1. Значит,2l не меньше половины длины самой этой окружности, то есть р, и l ? р/2. Теорема доказана.

Теорема 2: л ? v3

Для её доказательства достаточно объяснить, как склеить ленту Мёбиуса из полоски, длина которой больше v3. Предположим сначала, что её длина в точности равна v3. Тогда на этой полоске можно расположить два правильных треугольника (рис. 12). Перегнём полоску по боковым сторонам этих треугольников, чередуя направления сгиба (рис. 13). Края АВ и CD полоски совместятся, причём точка А совместится с точкой D, а точка В - с точкой С. Получится лента Мёбиуса.

При этом построении было нарушено главное правило - не мять бумагу. Но легко понять, что если длина полоски хоть немного больше v3, то излом по образующей можно заменить изгибанием, производимым на узком участке (рис. 14).

Короче говоря, излом вдоль прямолинейного отрезка нам не страшен: его можно заменить близким к нему изгибанием. Непоправимое сминание бумаги происходит, когда две линии перегиба пересекаются, т.е. когда лист складывается наподобие носового платка. Как выглядит получившаяся лента Мёбиуса, показано на рисунке 15.

Её устройство можно представить себе так: три одинаковых правильных треугольника ABC, А'В'С', А"В"С" лежат параллельно друг другу, соответствующие вершины над соответствующими вершинами; стороны АВ и А'В', В'С' и В"С", С"А" и СА соединены перемычками. Линия склейки проходит по медиане одного из треугольников.

Теорема 3. Ленту Мёбиуса с самопересечениями можно склеить из полоски любой длины, большей р/2.

Делается это так. Возьмём достаточно большое нечётное n и построим правильный n-угольник, вписанный в окружность диаметра 1.

Далее рассмотрим n содержащих центр окружности треугольников, каждый из которых ограничен стороной и двумя диагоналями n-угольника (рис. 16; здесь n=7). Эти треугольники покрывают наш n-угольник, некоторые его места - по нескольку раз. Приложим теперь эти n треугольников друг к другу так, как показано на рисунке 17. После этого отрежем по длинной медиане половину самого левого треугольника и приложим её к самому правому треугольнику. Получится прямоугольная полоска с отношением длины к ширине, большим р/2, и стремящимся к р/2 при n, стремящимся к ? (ширина полоски стремится к 1, а длина - к р/2).

Если последовательно перегнуть эту полоску по всем проведённым на ней линиям, чередуя направления сгиба (рис. 18), то треугольники расположатся как на рисунке 16. Отрезки АВ и CD при этом почти совместятся - между ними окажется только несколько слоев сложенной бумаги. При этом точка А совместится с D, а точка В - с С, так что если бы мы смогли «пропустить ленту сквозь себя» и склеить отрезки АВ с CD, то получилась бы лента Мёбиуса. Если ленту взять чуть более длинной, можно избежать складок, подобно тому как мы это сделали в доказательстве теоремы 2. Что получится, изображено на рисунке 19.

Заключение

В реферате была проделана работа по доказательству некоторых свойств ленты Мебиуса. Изучались свойства ленты на наглядных примерах. Также, в реферате доказаны некоторые теоремы. Они могут быть полезны для тех, кто начинает изучать топологию.

Лента Мёбиуса - первая односторонняя поверхность, которую открыл учёный. Чудесные свойства листа Мебиуса привели к новым открытиям и изобретениям (иногда очень полезным, а иногда и совершенно бесполезным). В реферате я попытался описать свойства этой поверхности, показать её значимость на практике, доказать, что лента Мёбиуса - топологическая фигура.

Лента Мебиуса вдохновила многих художников на создание известных скульптур, картин и графики. Мотив Ленты Мебиуса встречается в названиях художественных произведений, общественных заведений, логотипах. Многие физические явления используют для объяснения лист Мебиуса. Ученые генетики рассматривают код ДНК в качестве модели ленты Мебиуса. Лист Мебиуса применяется для усовершенствования технических приборов. Загадочная лента Мебиуса применяется для показа фокусов в цирке.

Если у ременной передачи ремень сделать в виде ленты Мёбиуса, то его поверхность будет изнашиваться в два раза медленнее, чем у обычного кольца. Почему? В работе ремня принимает участие вся поверхность, а не только внутренняя ее часть, как у обычной ременной передачи. Поэтому в виде ленты Мёбиуса хорошо делать конвейерные ленты.

В ХХ веке были созданы особые кассеты для магнитофона, которые дали возможность слушать магнитофонные кассеты «с двух сторон», не меняя их местами. Во многих матричных принтерах красящая лента также имеет вид листа Мёбиуса для увеличения её ресурса.

Лист Мёбиуса был эмблемой извеcтной серии научно-популярных книг «Библиотечка «Квант»». Он также постоянно встречается в научной фантастике. Кольцо Мёбиуса постоянно упоминается в произведениях уральского писателя Владислава Крапивина. В рассказе «Лист Мёбиуса» Дейча бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда. По мотивам рассказа был снят фантастический фильм «Мёбиус» режиссёра Густаво Москера. Также идея ленты Мёбиуса используется в рассказе Клифтона «На ленте Мёбиуса».

Использованная литература

М. Гарднер «Математические чудеса и тайны», «Наука» 1978 г., стр. 43-48.

Е.С. Смирнова «Курс наглядной геометрии» 6 класс, «Просвещение» 2002 г., стр. 63-67.

Современный словарь иностранных слов, «Русский язык» 1993 г., стр. 146, 468, 579, 612.

И.Ф. Шарыгин, Л.Н. Еранжиева «Наглядная геометрия» 5-6 класс, «Дрофа» 2000 г., стр. 69-72.

Энциклопедия для детей «Математика», «Аванта+» 2001 г., стр. 111-112.

Б.А. Кордемский «Топологические опыты своими руками», научно-популярный журнал «Квант» 1974 г., №3, стр. 73-75.

Размещено на Allbest.ru


Подобные документы

  • Особенности и свойства односторонней поверхности; непрерывно зависящая от точки нормаль, свойство нормального вектора возвращаться в исходную точку с противоположным вектором. Лента Мёбиуса - односторонняя поверхность с краем, особенности бутылки Клейна.

    презентация [1,4 M], добавлен 12.02.2012

  • История открытия Лейпцигским профессором листа Мебиуса, его удивительные свойства: имеет всего одну сторону, не связанную с положением в пространстве, понятием расстояния и угла. Техническое применение ленты и ее описание в фантастических рассказах.

    реферат [2,3 M], добавлен 27.12.2010

  • Бутылка Клейна – определенная неориентируемая поверхность первого рода, поверхность, у которой нет различия между внутренней и внешней сторонами. Связь бутылки Клейна с лентой Мебиуса. Получение бутылки Клейна. Построение бесконечной серии многообразий.

    курсовая работа [2,5 M], добавлен 20.12.2011

  • Понятие и свойства плоских кривых, история их исследований, способы их образования, разновидности и свойства нормали. Методы построения некоторых видов кривых, называемых "Декартов лист", лемнискаты Бернулли, улитки Паскаля, строфоиды, циссоиды Диокла.

    курсовая работа [3,1 M], добавлен 29.03.2011

  • Студенческие годы Н.И. Лобачевского. Первые годы преподавательской деятельности. Организация печатного университетского органа. История открытия неевклидовой геометрии. Признание геометрии Н.И. Лобачевского и ее применение в математике и физике.

    дипломная работа [4,4 M], добавлен 05.03.2011

  • Понятие отражательной и вращательной осевых симметрий в евклидовой геометрии и в естественных науках. Примеры осевой симметрии - бабочка, снежинка, Эйфелева башня, дворцы, лист крапивы. Зеркальное отражение, радиальная, аксиальная и лучевая симметрии.

    презентация [447,3 K], добавлен 17.12.2013

  • История развития учения о линиях. Замечательные линии третьего порядка: Декартов лист, циссоида Диоклеса, строфрида, верзьера Аньези. Линии четвертого и высших порядков и некоторые трансцендентные линии: спираль Архимеда, кривая кратчайшего спуска.

    курсовая работа [1,7 M], добавлен 12.06.2011

  • История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.

    курсовая работа [636,2 K], добавлен 20.12.2015

  • Краткая биография Н.И. Лобачевского. История открытия неевклидовой геометрии. Основные факты и непротиворечивость геометрии Лобачевского, её значение и применение в математике и физике. Путь признания идей Н.И. Лобачевского в России и за рубежом.

    дипломная работа [1,8 M], добавлен 21.08.2011

  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация [993,0 K], добавлен 12.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.