Функция многих переменных

Функция многих переменных. Предел и непрерывность функции многих переменных. Частные производные. Дифференцируемость функции. Производная в направлении. Градиент. Локальные экстремумы. Интегральное исчисление функций. Неопределённный интеграл.

Рубрика Математика
Вид курс лекций
Язык русский
Дата добавления 08.04.2008
Размер файла 309,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

п=1,2,3,… .

Тогда, если рядсходящийся, то сходящийся и ряд , а если ряд расходящийся, то расходящийся и ряд .

Второй признак сравнения. Пусть члены рядов и положительны, причём существует конечный предел

.

Тогда оба ряда сходятся или расходятся одновременно.

Сравнивать ряди удобно с рядами и , сходимость которых известна.

Ряд является суммой бесконечной геометрической прогрессии. Он сходится при (когда прогрессия убывающая) и расходится при.

Ряд называется обобщенным гармоническим рядом. Он сходится при и расходится при .

Признак Даламбера. Если для членов ряда с положительными членами существует предел

,

то ряд будет сходящимся при и расходящимся при .

Радиальный признак Коши. Если для членов ряда с положительными членами существует предел

,

то ряд будет сходящимся при и расходящимся при .

Интегральный признак Коши. Если , где - положительная невозрастающая непрерывная функция, то ряд и интеграл сходятся или расходятся одновременно.

Применим интегральный признак Коши для исследования обобщенного гармонического ряда.

1. , - гармонический ряд.

=, ==- расходится.

2. , =,

Значит, ряд сходится при и расходится при .

Знакочередующимися называют ряды, в которых знаки членов строго чередуются

, где . (8.2)

Признак Лейбница. Если для членов ряда (8.2) выполняется два условия:

1) .

2) ,

то этот ряд сходится, его сумма положительна и не превышает .

Следствие. Если сумму S сходящегося ряда (8.2) заменить суммой S его п первых членов, то допущенная при этом погрешность не превышает абсолютной величины первого из отброшенных членов, то есть

.

Это следствие широко используется при приближённых вычислениях.

Знакопеременными называются ряды, у которых члены имеют разные знаки.

Знакопеременный ряд называется абсолютно сходящимся, если сходится ряд , составленный из абсолютных величин его членов.

Знакопеременный ряд называется условно сходящимся, если он сходящийся, а ряд, составленный из абсолютных величин его членов, расходящийся.

Теорема 8.2. Любой абсолютно сходящийся ряд сходится.

Для чего надо различать абсолютную и условную сходимость? Как ответ на этот сформулируем две теоремы.

Теорема 8.3. Абсолютно сходящийся ряд остаётся абсолютно сходящимся при произвольной перестановке его членов. При этом сумма ряда не зависит от порядка его членов.

Теорема 8.4. Члены условно сходящегося ряда всегда можно переставить так, чтобы его сумма равнялась наперёд заданному числу. Более того, можно так переставить члены условно сходящегося ряда, что новый ряд будет расходящимся.

Интересные свойства условно сходящихся рядов показывает такой пример.

Пример 8.2. Пусть 1-.

Запишем ряд иначе:

=

=(1-,

2=1?

Значит, переставляя члены условно сходящегося ряда, получили неверный результат.

3. Ряд , членами которого является функцией от х, называется функциональным рядом. Давая переменной х конкретные числовые значения, получим разные числовые ряды, которые могут быть сходящимися или расходящимися.

Множество всех значений х, для которых ряд сходящийся, называется областью сходимости этого ряда.

Функциональный ряд вида (8.3)

где - числа, называется степенным рядом.

Переобозначив на х, ряд (8.3)всегда можно свести к виду (8.4)

Для простоты будем изучать ряды вида (8.4). Ряд (8.4) всегда сходится, по крайней мере, в точке х=0.

Теорема Абеля.(1802-1829). Если ряд (8.4) сходящийся при , то он абсолютно сходящийся для всех значений х, что удовлетворяют неравенству , то есть в интервале . Если при ряд (8.4) расходящийся, то он расходящийся для всех значений х, что удовлетворяют неравенству .

Из теоремы Абеля следует, что если ряд (8.4) сходится хотя бы в одной точке , то существует такое число R>0, что при ряд сходится абсолютно, а при расходится. Это число R называют радиусом сходимости степенного ряда, а интервал - его интервалом сходимости.

Радиус сходимости ряда (8.5) можно найти по формулам

или . (8.5)

Вывод. Чтобы найти область сходимости ряда (8.5) надо:

1) найти интервал сходимостиряда, применяя к ряду признаки Даламбера и Коши, или пользуясь формулами (8.5);

2) исследовать сходимость ряда на концах интервала сходимости, то есть в точках .

В середине интервала сходимости степенные ряды можно почленно интегрировать и дифференцировать, причём полученные при этом ряды будут иметь тот же радиус сходимости, что и исходный ряд.

Если функция f(х) в интервале имеет производные всех порядков и существует такое число М>0, что, , п=0, 1, 2,…, где , то функцию f(х) можно разложить в ряд Тейлора

.

При ряд Тейлора имеет вид

и называется рядом Маклорена.

Приведём примеры рядов Маклорена некоторых элементарных функций.

;

;

;

;

= ;

;

Ряды широко используются для приближённого вычисления функций, интегралов, для приближённого интегрирования дифференциальных уравнений.


Подобные документы

  • Понятие, предел и непрерывность функции двух переменных. Частные производные первого порядка, нахождение полного дифференциала. Частные производные высших порядков и экстремум функции нескольких переменных. Необходимые условия существования экстремума.

    контрольная работа [148,6 K], добавлен 02.02.2014

  • Понятие функции нескольких переменных. Аргументы, частное значение и область применения функции. Рассмотрение функции двух и трех переменных. Предел функции нескольких переменных, теорема. Главная сущность непрерывности функции нескольких переменных.

    реферат [86,3 K], добавлен 30.10.2010

  • Многие переменные, минимизация их функций. Точки максимума и минимума называются точками экстремума функции. Условия существования экстремумов функции многих переменных. Квадратичная форма, принимающая, как положительные, так и отрицательные значения.

    реферат [70,2 K], добавлен 05.09.2010

  • Методы нахождения минимума функции одной переменной и функции многих переменных. Разработка программного обеспечения вычисления локального минимума функции Химмельблау методом покоординатного спуска. Поиск минимума функции методом золотого сечения.

    курсовая работа [95,1 K], добавлен 12.10.2009

  • Понятие функции двух и более переменных, ее предел и непрерывность. Частные производные первого и высших порядков. Определение полного дифференциала. Необходимые и достаточные условия существования экстремума и его нахождение на условном множестве.

    реферат [145,4 K], добавлен 03.08.2010

  • Функции нескольких переменных. Локальные экстремумы функции двух переменных. Производная по направлению. Двойные и тройные интегралы. Вычисление объемов тел и площадей плоских фигур. Тройной интеграл, криволинейные интегралы первого и второго рода.

    учебное пособие [511,2 K], добавлен 23.04.2012

  • Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.

    контрольная работа [61,5 K], добавлен 14.01.2015

  • Пределы последовательностей и функций. Производная и дифференциал. Геометрические изложения и дифференцированные исчисления (построение графиков). Неопределенный интеграл. Определенный интеграл. Функции нескольких переменных, дифференцированных исчислений

    контрольная работа [186,9 K], добавлен 11.06.2003

  • Понятия зависимой, независимой переменных, области определения функции. Примеры нахождения области функции. Примеры функций нескольких переменных: линейная, квадратическая, функция Кобба-Дугласа. Построение графика и линии уровня функции двух переменных.

    презентация [104,8 K], добавлен 17.09.2013

  • Направление, задаваемое единичным вектором. Предел отношения приращения функции в направлении к величине перемещения. Скалярное произведение в координатах. Градиент функции в точке. Направление максимальной скорости изменения функции в данной точке.

    презентация [91,0 K], добавлен 17.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.