Коллинеарность и компланарность векторов. Канонические уравнения прямой
Доказательство коллинеарности и компланарности векторов. Проведение расчета площади параллелограмма, построенного на векторах а и в, объема тетраэдра, косинуса угла, точки пресечения прямой и плоскости. Определение канонических уравнений прямой.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 21.02.2010 |
Размер файла | 87,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
"ВЛАДИМИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"
Кафедра: Функциональный анализ и его приложения
Самостоятельная работа по математике
Владимир 2009
Задача 1. Коллинеарность векторов
а = { 2; -1; 6 } в = { -1; 3; 8 }
c1=5a - 2b = {5*2 - 2*(-1); 5*(-1) - 2*3; 5*6-2*8 } = {12; -11; 14 }
с2=2а - 5в = {2*2 - 5*(-1); 2*(-1) - 5*3; 2*6-5*8 } = {9; -17; -28 }
? ?-
12/9 ? 11/17 ? -14/28
Ответ: не коллинеарны.
Задача 2. Косинус угла между векторами АВ и АС
А (3; 3; -1 ) B (5; 1; -2 ) C (4; 1; -3 )
= {2; -2; -1 } || = =
= {1; -2; -2 } || = =
cos (€) = =
Задача 3. Площадь параллелограмма построенного на векторах а и в.
а=5p-q b=p+q |p|=5 |q|=3 (p€q) = 5
S=|5p - q|*|p + q|=|5p*p + 5p*q - q*p - q*q|=|5p*q + p*q| =6*|p*q|=6|p|*|q|*sin(p€q)=
=6*5*3*sin5
sin5= 90*=45
Задача 4. Компланарность векторов а, в, с.
а = { 1; -1; 4 } в = { 1; 0; 3 } с = { 1; -3; 8 }
1*(0*8 - 3*(-3)) - (-1)*(1*8 - 1*3)+4(1*(-3) - 1*0)=9 + 5 - 12=2
2?0 - не компланарны.
Задача 5. Объем тетраэдра с вершинами в точках А1 А2 А3 А4 и его высоту, опущенную из вершины А4на грань А1 А2 А3.
А1 = { 0; -3; 1 } А2 = { -4; 1; 2 } А3 = { 2; -1; 5 } А4 = { 3; 1; -4 }
= { -4; 4; 1 }
= { 2; 2; 4 }
= { 3; 4; -5 }
= * |(-4)*(2*(-5) - 4*4) - 4*(2*(-5) - 3*4) + 1*(2*4 - 3*2)=
=|40 + 64 + 40 + 48 + 8 - 6|=194=32,33
= |i*(4*4 - 1*2) - j*((-4)*4 - 2*1)+k*((-4)*2 - 2*4)= |14i + 18j - 16k|=
=v142+182-162=v264=*16,25=8,125
h==11,94
Задача 6. Расстояние от точки М0 до плоскости, проходящей через три точки
.
М1 (1; 2; 0 ) М2 (3; 0; -3 ) М3 (5; 2; 6 ) М0 (-13; -8; 16 )
(х-1) * ((-2)*6 - 0*(-3)) - (у-2)*(2*6 - 4*(-3)) + (z - 0)*(2*0 - 4*(-2))=0
(-12)*(х - 1) - 24*(у - 2) + 8*(z - 0) = 0
(-3)*(х - 1) - 6*(у - 2) + 2*(z - 0)=0
-3х - 6у + 2Z + 15 = 0
d==
Задача 7. Уравнение плоскости, проходящей через точку А перпендикулярно вектору .
А (-3; -1; 7 ) B (0; 2; -6 ) C (2; 3; -5 )
={2; 1; 1}
2*(х + 3) + 1*(у + 1) + 1*(z - 7)=0
2х + у + z = 0
Задача 8. Угол между плоскостями
2у + z - 9=0
х - у + 2z - 1=0
п1={0; 2; 1 }
п2={1; -1; 2 }
cosц===90
Задача 9. Координаты точки А, равноудаленной от точек В и С.
А (х; 0; 0 ) B (4; 5; -2 ) C (2; 3; 4 )
АВ===
АС===
=
=х2 - 4х+29
х2 - х2 - 8х + 4х=29 - 45
-4х=-16
х=4
А (4; 0; 0 )
Задача 10. Канонические уравнения прямой
х - 3у + z + 2 = 0
х + 3у + 2z + 14 = 0
= i*((-3)*2 - 3*1)-j*(1*2 - 1*1)+k*(1*3 - 1*(-3) = -9i -j + 6k=
= { -9; -1; 6}
(-8; 0; 0 ) = =
Задача 11. Точка пересечения прямой и плоскости
= =
3х - 2у + 5z - 3 = 0
= = = t
3*(1 + 6t) - 2*(3 + t) + 5*((-5) + 3t) - 3 = 0
3 + 18t - 6 - 2t - 25 + 15t - 3 = 0
31t - 31 = 0
31t = 31
t = 1
х = 1 + 6*1 у = 3 + 1 z = (-5) + 3*1
х = 7 у = 4 z = -2
( 7; 4; -2 )
Подобные документы
Возможные случаи ориентации прямой и плоскости для заданного уравнения. Условия их перпендикулярности и параллельности. Скалярное произведение перпендикулярных векторов. Координаты точки, лежащей на прямой. Угол между прямой и плоскостью, его определение.
презентация [65,2 K], добавлен 21.09.2013Написание уравнения прямой, проходящей через определенную точку и удаленной от начала координат на заданное расстояние. Расчет длины высот параллелограмма. Построение плоскости и прямой, определение точки пересечения прямой и плоскости и угла между ними.
контрольная работа [376,1 K], добавлен 16.06.2012Правые и левые ориентации. Стороны прямой на плоскости и плоскости в пространстве. Деформации базисов и ориентации. Отношение одноименности отличных от нуля векторов прямой, деформируемости базисов. Задание направления движения по окружности в плоскости.
контрольная работа [448,0 K], добавлен 09.04.2016Доказательство линейной независимости системы векторов пирамиды. Расчет длины ребра, угла между ребрами. Составление уравнения прямой и плоскости. Выполнение операций для матриц. Величина главного определителя. Поиск алгебраических дополнений матрицы.
контрольная работа [156,0 K], добавлен 20.03.2017Общее и каноническое уравнение прямой, декартова прямоугольная система. Перпендикулярность вектора к прямой и параметрические уравнения. Угловой коэффициент и наклон прямой к оси. Тангенс угла наклона и представление отрезка, отсекаемого линией.
лекция [124,0 K], добавлен 17.12.2011Понятие параллельности как отношения между прямыми. Случаи расположения прямой и плоскости. Признаки параллельности прямой и плоскости. Основные свойства двух прямых. Отсутствие общих точек у прямой и плоскости. Признаки параллельности плоскостей.
презентация [1,5 M], добавлен 14.10.2014Общее уравнение прямой, переходящей через определенную точку. Условия перпендикулярности прямых. Условие перпендикулярности плоскостей. Свойства медианы треугольника. Нахождение направляющих векторов прямых. Условие параллельности прямой и плоскости.
контрольная работа [87,1 K], добавлен 07.09.2010Способы задания прямой на плоскости. Уравнение с угловым коэффициентом. Рассмотрение частных случаев. Уравнение прямой, проходящей через заданную точку в заданном направлении. Построение графика прямой, проходящей через две точки. Рассмотрение примера.
презентация [104,9 K], добавлен 21.09.2013Перпендикулярные прямые в пространстве. Определение и признак прямой, перпендикулярной к плоскости. Теорема о перпендикулярности двух параллельных, двух перпендикулярных прямых к плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью.
презентация [160,5 K], добавлен 20.11.2014Понятие числовой прямой. Типы числовых промежутков. Определение координатами положения точки на прямой, на плоскости, в пространстве, система координат. Единицы измерения для осей. Определение расстояния между двумя точками плоскости и в пространстве.
реферат [123,9 K], добавлен 19.01.2012