Приложения определенного интеграла к решению некоторых задач механики и физики
Моменты и центры масс плоских кривых. Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 04.09.2003 |
Размер файла | 20,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
3
Приложения определенного интеграла к решению некоторых задач механики и физики
1. Моменты и центры масс плоских кривых. Если дуга кривой задана уравнением y=f(x), a=x=b, и имеет плотность 1) =(x), то статические моменты этой дуги Mx и My относительно коорди-натных осей Ox и Oy равны
моменты инерции IХ и Iу относительно тех же осей Ох и Оу вычис-ляются по формулам
а координаты центра масс и -- по формулам
где l-- масса дуги, т. е.
Пример 1. Найти статические моменты и моменты инерции относительно осей Ох
и Оу дуги цепной линии y=chx при 0=x=1.
1) Всюду в задачах, где плотность не указана, предполагается, что кривая однородна и =1.
< Имеем: Следовательно,
?
Пример 2. Найти координаты центра масс дуги окружности x=acost, y=asint, расположенной в первой четверти.
< Имеем:
Отсюда получаем:
?
В приложениях часто оказывается полезной следующая
Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости ду-ги и ее не пересекающей, равна произведению длины дуги на длину окружности, описываемой ее центром масс.
Пример 3. Найти координаты центра масс полуокружности
<Вследствие симметрии . При вращении полуокружности вок-руг оси Ох получается сфера, площадь поверхности которой равна , а длина полуокружности равна па. По теореме Гульдена имеем
Отсюда , т.е. центр масс C имеет координаты C.
2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах 4--7.
Пример 4. Скорость прямолинейного движения тела выражает-ся формулой (м/с). Найти путь, пройденный телом за 5 секунд от начала движения.
< Так как путь, пройденный телом со скоростью (t) за отрезок времени [t1,t2], выражается интегралом
то имеем:
?
Пример 5. Какую работу необходимо затратить для того, чтобы тело массы m поднять с поверхности Земли, радиус которой R, на высоту /i? Чему равна работа, если тело удаляется в беско-нечность?
<4| Работа переменной силы / (#), действующей вдоль оси Ох на от-резке [а, Ь], выражается интегралом
Подобные документы
История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.
реферат [323,3 K], добавлен 07.09.2009Определение определенного интеграла, его свойства. Длина дуги кривой. Площадь криволинейной трапеции. Площадь поверхности вращения. Площади фигур, ограниченных графиками функций, ограниченных линиями, заданными уравнениями. Вычисление объемов тел.
контрольная работа [842,6 K], добавлен 10.02.2017Производная определенного интеграла по переменному верхнему пределу. Вычисление определенного интеграла как предела интегральной суммы по формуле Ньютона–Лейбница, замена переменной и интегрирование по частям. Длина дуги в полярной системе координат.
контрольная работа [345,3 K], добавлен 22.08.2009Понятие определённого интеграла, расчет площади, объёма тела и длины дуги, статического момента и центра тяжести кривой. Вычисление площади в случае прямоугольной криволинейной области. Применение криволинейного, поверхностного и тройного интегралов.
курсовая работа [2,1 M], добавлен 19.05.2011Общая схема применения определенного интеграла, правила и принципы реализации данного процесса. Вычисления координат центра тяжести плоских фигур. Решения задач на вычисление силы взаимодействия двух материальных тел, вращающихся вокруг неподвижной оси.
методичка [195,5 K], добавлен 15.06.2015Методика и основные этапы нахождения параметров: площади криволинейной трапеции и сектора, длины дуги кривой, объема тел, площади поверхности тел вращения, работы переменной силы. Порядок и механизм вычисления интегралов с помощью пакета MathCAD.
контрольная работа [752,3 K], добавлен 21.11.2010Криволинейный интеграл первого и второго рода. Площадь области, ограниченной замкнутой кривой. Объем тела, образованного вращением замкнутой кривой. Центр масс и моменты инерции кривой. Магнитное поле вокруг проводника с током. Сущность закона Фарадея.
реферат [1,4 M], добавлен 09.01.2012Вычисление площадей плоских фигур. Нахождение определенного интеграла функции. Определение площади под кривой, площади фигуры, заключенной между кривыми. Вычисление объемов тел вращения. Предел интегральной суммы функции. Определение объема цилиндра.
презентация [159,1 K], добавлен 18.09.2013Характеристика семейства поверхностей. Касательная прямая и плоскость. Криволинейные координаты. Вычисление длины дуги кривой на поверхности и ее площади. Угол между двумя линиями на поверхности. Нормальная кривизна линий, расположенных на поверхности.
дипломная работа [2,0 M], добавлен 18.05.2013Определённый интеграл — аддитивный монотонный нормированный функционал, заданный на множестве пар, его компоненты, свойства. Вычисление определённого интеграла; формула Ньютона-Лейбница. Геометрические приложения: площадь, длина дуги, объем тела вращения.
презентация [308,0 K], добавлен 30.05.2013