Парное линейное уравнение регрессии

Методика и основные этапы расчета параметров линейного уравнения парной регрессии с помощью программы Excel. Анализ качества построенной модели, с использованием коэффициента парной корреляции, коэффициента детерминации и средней ошибки аппроксимации.

Рубрика Математика
Вид лабораторная работа
Язык русский
Дата добавления 15.04.2014
Размер файла 22,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Лабораторная работа1

Парное линейное уравнение регрессии

Цель работы: рассчитать параметры линейного уравнения парной регрессии с помощью Excel, а также проанализировать качество построенной модели, использую коэффициент парной корреляции, коэффициент детерминации и среднюю ошибку аппроксимации.

аппроксимация уравнение программа корреляция

Для анализа зависимости объема потребления Y (руб.) домохозяйства в зависимости от располагаемого дохода X (руб.) отобрана выборка объема n =12, результаты которой приведены в таблице:

1

2

3

4

5

6

7

8

9

10

11

12

х

107

109

110

113

120

121

124

127

129

140

141

143

y

102

105

108

110

115

118

119

124

131

131

140

144

Необходимо:

1. найти параметры a и b линейного уравнения парной регрессии y(x);

2. найти коэффициент детерминации;

3. рассчитать линейный коэффициент парной корреляции и оценить тесноту связи, используя таблицу Чеддока;

4. Найти среднюю ошибку аппроксимации;

5. Построить график линейного уравнения регрессии.

Решение

Формально критерий МНК можно записать так:

S = ?(yi - y*i)2 > min

Система нормальных уравнений.

a*n + b?x = ?y

a?x + b?x2 = ?y*x

Для наших данных система уравнений имеет вид

12a + 1484 b = 1447

1484 a + 185316 b = 180822

Из первого уравнения выражаем а и подставим во второе уравнение:

Получаем эмпирические коэффициенты регрессии: b = 1.0455, a = -8.7108

Уравнение регрессии (эмпирическое уравнение регрессии):

y = 1.0455 x - 8.7108

Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов вi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.

Для расчета параметров регрессии построим расчетную таблицу (табл. 1)

x

y

x2

y2

x * y

107

102

11449

10404

10914

109

105

11881

11025

11445

110

108

12100

11664

11880

113

110

12769

12100

12430

120

115

14400

13225

13800

121

118

14641

13924

14278

124

119

15376

14161

14756

127

124

16129

15376

15748

129

131

16641

17161

16899

140

131

19600

17161

18340

141

140

19881

19600

19740

143

144

20449

20736

20592

1484

1447

185316

176537

180822

1. Параметры уравнения регрессии.

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

2. Коэффициент корреляции

Ковариация.

Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от -1 до +1.

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

0.1 < rxy < 0.3: слабая;

0.3 < rxy < 0.5: умеренная;

0.5 < rxy < 0.7: заметная;

0.7 < rxy < 0.9: высокая;

0.9 < rxy < 1: весьма высокая;

В нашем примере связь между признаком Y фактором X весьма высокая и прямая.

Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:

Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 1.05 x -8.71

Коэффициентам уравнения линейной регрессии можно придать экономический смысл.

Коэффициент регрессии b = 1.05 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 1.05.

Коэффициент a = -8.71 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.

Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.

Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.

Связь между у и х определяет знак коэффициента регрессии b (если > 0 - прямая связь, иначе - обратная). В нашем примере связь прямая.

3. Ошибка аппроксимации.

Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения регрессии к исходным данным.

Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве регрессии.

Для оценки качества параметров регрессии построим расчетную таблицу (табл. 2)

x

y

y(x)

(yi-ycp)2

(y-y(x))2

(xi-xcp)2

|y - yx|:y

107

102

103.16

345.34

1.34

277.78

0.0114

109

105

105.25

242.84

0.0621

215.11

0.00237

110

108

106.29

158.34

2.91

186.78

0.0158

113

110

109.43

112.01

0.32

113.78

0.00517

120

115

116.75

31.17

3.06

13.44

0.0152

121

118

117.8

6.67

0.0419

7.11

0.00173

124

119

120.93

2.51

3.73

0.11

0.0162

127

124

124.07

11.67

0.00467

11.11

0.000551

129

131

126.16

108.51

23.43

28.44

0.037

140

131

137.66

108.51

44.35

266.78

0.0508

141

140

138.71

377.01

1.68

300.44

0.00925

143

144

140.8

548.34

10.26

373.78

0.0222

1484

1447

1447

2052.92

91.2

1794.67

0.19

4. Оценка параметров уравнения регрессии.

Показатели качества уравнения регрессии

Значение

Коэффициент детерминации

не был рассчитан

Средний коэффициент эластичности

не был рассчитан

Средняя ошибка аппроксимации

1.56

Размещено на Allbest.ru


Подобные документы

  • Значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а). Определение стандартной ошибки предсказания являющейся мерой качества зависимости величин Y и х с помощью уравнения линейной регрессии. Значимость коэффициента регрессии.

    задача [133,0 K], добавлен 21.12.2008

  • Построение уравнения регрессии. Оценка параметров линейной парной регрессии. F-критерий Фишера и t-критерий Стьюдента. Точечный и интервальный прогноз по уравнению линейной регрессии. Расчет и оценка ошибки прогноза и его доверительного интервала.

    презентация [387,8 K], добавлен 25.05.2015

  • Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.

    контрольная работа [380,9 K], добавлен 05.04.2015

  • Сортировка размера пенсии по возрастанию прожиточного минимума. Параметры уравнений парных регрессий. Значения параметров логарифмической регрессии. Оценка гетероскедастичности линейного уравнения с помощью проведения теста ранговой корреляции Спирмена.

    контрольная работа [178,0 K], добавлен 23.11.2013

  • Построение модели множественной регрессии теоретических значений динамики ВВП, определение средней ошибки аппроксимации. Выбор фактора, оказывающего большее влияние. Построение парных моделей регрессии. Определение лучшей модели. Проверка предпосылок МНК.

    курсовая работа [352,9 K], добавлен 26.01.2010

  • Проверка адекватности линейной регрессии. Вычисление выборочного коэффициента корреляции. Обработка одномерной выборки методами статистического анализа. Проверка гипотезы значимости с помощью критерия Пирсона. Составление линейной эмпирической регрессии.

    задача [409,0 K], добавлен 17.10.2012

  • Методы составления закона распределения случайной величины. Вычисление средней арифметической и дисперсии распределения. Расчет средней квадратической ошибки бесповторной выборки. Построение эмпирических линий регрессии, поиск уравнения прямых регрессий.

    контрольная работа [77,6 K], добавлен 20.07.2010

  • Определение частных производных первого и второго порядков заданной функции, эластичности спроса, основываясь на свойствах функции спроса. Выравнивание данных по прямой методом наименьших квадратов. Расчет параметров уравнения линейной парной регрессии.

    контрольная работа [99,4 K], добавлен 22.07.2009

  • Классификация взаимосвязи явлений, различаемых в статистике, их разновидности и характеристика, отличительные признаки. Сущность коэффициента парной корреляции, его особенности и методика оценки достоверности, применение доверительных интервалов.

    реферат [1,3 M], добавлен 30.04.2009

  • Исследование зависимости потребления бензина в городе от количества автомобилей с помощью методов математической статистики. Построение диаграммы рассеивания и определение коэффициента корреляции. График уравнения линейной регрессии зависимости.

    курсовая работа [593,2 K], добавлен 28.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.