Трансформация преобразований

Понятие трансформации преобразований. Трансформация движения движением. Трансформация гомотетии движением. Трансформация гомотетии гомотетией. Трансформация движения гомотетией. Трансформация подобия гомотетией.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 08.08.2007
Размер файла 302,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

, (42)

где точки A, B, C различны и числа k, l, m не равны 1.

Решение. Из данной зависимости (42) получаем: , или в принятых обозначениях (1)

. (43)

Рассмотрим отдельно два возможных случая: lk ? 1 и lk = 1. В первом случае , причем . Отсюда получаем: . Согласно формуле (24), результатом трансформации гомотетии гомотетией является снова гомотетия. Поэтому , при этом по теореме о неподвижной точке = B1/l(P) и, следовательно, . Тогда (43) принимает вид:

,

где Q = Cm(P), и, значит, . Так как , , , то точки A, B, C коллинеарны. Как видим, при lk ? 1 для коэффициентов k, l, m дополнительных ограничений не возникает.

При lk = 1 по формуле (22) будет , тогда и согласно (26) . Поэтому (43) принимает вид , или при любом положении точки C. Отсюда lm = 1. Итак, при lk = lm = 1 центры A, B, C гомотетий произвольны.

Задача 4. Точки А, В, С лежат на прямой а, точки А1, В1, С1 - на прямой а1, параллельной прямой а (рис. 15). Доказать, что точки P = (AB1) ? (A1B), Q = (AC1) ? (A1C) и R = (BC1) ? (B1C) коллинеарны (теорема Паппа-Паскаля).

Решение. Рассмотрим гомотетии Pk, Rl, Qm, заданные указанными центрами и парами точек A > B1, B1 > C, C > A1 соответственно. Так как по условию a || a1, то Qm(A) = C1, Rl(C1) = B, Pk(B) = A1. Замечаем, что , поскольку произведение коэффициентов гомотетий в каждой из этих композиций одно и то же и эти композиции имеют общую пару соответственных точек A > A1. На основании предыдущей задачи при lk ? 1 точки P, Q, R коллинеарны. Если же lk = lm = 1, то при a || a1 это возможно лишь тогда, когда (PR) || a и (PQ) || a, то есть и в этом случае точки P, Q, R коллинеарны.

Задача 5. Если фигура имеет ось симметрии и единственный центр симметрии, то центр симметрии принадлежит оси симметрии. Доказать.

Решение. Пусть l - ось симметрии и Q - единственный центр симметрии фигуры F, то есть Sl(F) = F и ZQ(F) = F. Тогда композиция отображает F на себя. Поскольку , где A = = Sl(Q), то ZA(F) = F. Следовательно, точка A является центром симметрии фигуры F. Если бы , то A ? Q, что противоречит условию единственности центра симметрии фигуры F. Значит, .

Задача 6. Если композиция двух подобий перестановочна и одно из них имеет единственную неподвижную точку, то эта точка неподвижна и при втором подобии. Доказать.

Решение. Из (1) следует, что для любых преобразований f и g всегда выполняется равенство . Из него видно, что для того, чтобы , необходимо и достаточно выполнения условия f = fg. Если теперь f и g - подобия и A - единственная неподвижная точка подобия f (центр подобия), то она будет неподвижной при преобразовании fg = f. С другой стороны, по теореме о неподвижной точке подобие fg имеет неподвижную точку g(A). В силу единственности неподвижной точки подобия f = fg должно быть A = g(A), то есть A - неподвижная точка подобия g.

Библиографический список

1. Понарин, Я.П. Перемещения и подобия плоскости. [текст]/ Скопец З.А. - К.: Радянська школа, 1981. - 175 с.

2. Понарин, Я.П. Преобразования пространства. [текст] - Киров: Издательство ВГПУ, 2000. - 80 с.

3. Яглом, И.М. Идеи и методы аффинной и проективной геометрии. Часть 1. [текст]/ В.Г. Ашкинузе. - М.: Учпедгиз, 1962. - 247 с.

4. Скопец, З.А. Геометрические миниатюры. [текст]/ Сост. Г.Д. Глейзер. - М.: Просвещение, 1990. - 224 с.

5. Бахман, Ф. Построение геометрии на основе понятия симметрии. [текст] - М.: Наука, 1969.


Подобные документы

  • Методика нахождения различных решений геометрических задач на построение. Выбор и применение методов геометрических преобразований: параллельного переноса, симметрии, поворота (вращения), подобия, инверсии в зависимости от формы и свойств базовой фигуры.

    курсовая работа [6,4 M], добавлен 13.08.2011

  • Основные сведения, необходимые при решении задач на собственные значения. Итерационные методы. Определение собственных значений методами преобразований подобия. Определение собственных значений симметричной трехдиагональной матрицы.

    реферат [42,9 K], добавлен 19.05.2006

  • Принципы и этапы построения математической модели движения неуправляемого двухколесного велосипеда. Условия устойчивого движения. Вопрос гироскопической стабилизации движения. Модель движения велосипеда с гиростабилизатором в системе Matlab (simulink).

    статья [924,5 K], добавлен 30.10.2015

  • Основные композиции движений пространства. Композиции центральных симметрий пространства. Композиция зеркальной и центральной симметрий пространства. Композиции подобий и аффинных преобразований пространства.

    дипломная работа [132,4 K], добавлен 08.08.2007

  • Аналитические свойства интегральных преобразований. Интеграл Коши на различных кривых. Аналитическая зависимость от параметра. Существование производных всех порядков у аналитической функции. Вывод формулы Коши и формулировка следствий из данной формулы.

    курсовая работа [260,2 K], добавлен 10.04.2011

  • Описание системы трехмерного визуализатора процесса дефрагментации с точки зрения системного анализа. Исследование преобразований состояний кубика Рубика с помощью математической теории групп. Анализ алгоритмов Тистлетуэйта и Коцембы решения головоломки.

    курсовая работа [803,2 K], добавлен 26.11.2015

  • Формулировка основного закона динамики. Понятие и основные характеристики прямолинейного движения, формы и особенности его задания. Схема формирования и решения дифференциальных уравнений движения. Примеры решения типовых задач по данной тематике.

    презентация [1,7 M], добавлен 26.09.2013

  • От анализа Фурье к вейвлет-анализу. Некоторые примеры функций вейвлет-анализа в MATLAB. Построение систем полуортогональных сплайновых вейвлет. Применение вейвлет-преобразований для решения интегральных уравнений. Вейвлеты пакета wavelet toolbox.

    дипломная работа [1,5 M], добавлен 12.04.2014

  • Преобразования подобия, их свойства. Доказательство теоремы: гомотетия есть преобразование подобия. Основные признаки подобия треугольников, решение типовых задач. Углы, вписанные в окружность. Пропорциональность отрезков хорд и секущих окружности.

    реферат [729,0 K], добавлен 02.06.2009

  • Анализ движения математического маятника без трения в случае произвольных колебаний. Построение численно соответствующих кривых движения при различных начальных условиях. Закон движения маятника в эллиптических функциях, графики его траекторий.

    курсовая работа [1,2 M], добавлен 08.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.