Применение тригонометрической подстановки для решения алгебраических задач

Метод замены переменной при решении задач. Тригонометрическая подстановка. Решение уравнений. Решение систем. Доказательство неравенств. Преподавание темы "Применение тригонометрической подстановки для решения алгебраических задач".

Рубрика Математика
Вид дипломная работа
Язык русский
Дата добавления 08.08.2007
Размер файла 461,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Второе и третье задания были посвящены нахождению наибольшего и наименьшего значений функции.

Второе задание всеми учащимися было решено верно, при этом в качестве метода решения был выбран метод тригонометрической подстановки. Но в отличие от решения первого задания, во втором только двое учащихся дали аргументированное решение с полным обоснованием возможности введения тригонометрической подстановки. В одной работе эта возможность не получила достаточно полного обоснования. Остальные восемнадцать учащихся приступили к решению без доказательства возможности введения замены, причем из них только один верно указал, что .

К решению третьего задания приступили двадцать учащихся из двадцати одного. Из них трое решали алгебраическим способом и полностью справились с решением. Один ученик начал решение алгебраическим способом, получил промежуточный результат, который использовал при решении с помощью тригонометрической подстановки, но все решение не было доведено до конца. Шестнадцать учащихся применили метод тригонометрической подстановки для решения, но ни в одной из этих работ не было обоснования введения этой подстановки, и только четверо указали, что . Из шестнадцати работ шесть содержат ошибки. В трех решение было завершено после того, как было найдено наибольшее значение выражения, в то время как задание состояло в том, чтобы найти такие решения системы, при которых данное выражение принимает наибольшее значение. В остальных трех работах были допущены вычислительные ошибки.

Перейдем к разбору дополнительного задания. Оно содержало уравнение с параметром, для которого требовалось исследовать количество решений в зависимости от параметра. Из двадцати одного ученика к заданию на дополнительную оценку приступили двадцать человек, из них половина верно справилась с ним. Семеро из верно решивших учащихся опирались на графическую иллюстрацию, трое - использовали алгебраический подход. Из не решивших десяти человек семеро привели исходное уравнение с помощью тригонометрической подстановки к виду и продолжили решение для . Они не учли, что аргумент правой части равенства . Трое не рассмотрели все возможные случаи.

Этап 3. Проведение диагностирующей домашней контрольной работы.

Домашняя контрольная работа была проведена после завершающего четвертого занятия перед написанием итоговой контрольной работы.

Содержание:

1. Решите уравнение .

2. Решите уравнение .

3. Решите уравнение .

4. Найдите наибольшее и наименьшее значения выражения в области .

Результаты:

Фамилия

1 задание

2 задание

3 задание

4 задание

1

Бакулин

+

+

2

Бизяев

+

3

Витвицкий

+

+

+

4

Громазин

+

+

+

-

5

Давидюк

+

+

+

*

6

Жичкина

+

+

-

7

Журавлев

+

+

+

*

8

Коновалов

+

+

+

+

9

Коробейников

+

+

10

Макарова

+

+

+

11

Новоселов

+

+

-

*

12

Овчинников

+

+

+

13

Прокашев

+

+

+

+

14

Сероглазов

+

+

*

15

Скачилова

+

+

+

16

Хохлов

+

+

+

17

Черняк

+

+

18

Шильников

+

+

+

*

Процент учащихся, верно выполнивших задание

94%

100%

83%

89%

Процент учащихся, выбравших тригонометрическую подстановку

72%

100%

100%

100%

Процент учащихся, верно решивших с помощью тригонометрической подстановки

92%

100%

83%

89%

Процент учащихся, обосновавших введение тригонометрической подстановки

100%

100%

100%

56%

Процент учащихся, верно решивших другим способом

87,5%

-

-

-

Процент учащихся, решавших двумя способами

17%

0%

0%

0%

Первые три задания были посвящены решению иррациональных уравнений. Причем решить первое уравнение было рекомендовано двумя способами: с помощью тригонометрической подстановки и без нее. Это было сделано с той целью, чтобы показать учащимся: не всегда введение тригонометрической подстановки упрощает решение. Иногда применение стандартного метода для решения задач оказывается более эффективным. Таким образом, уравнение было призвано обратить внимание учащихся не необходимость обдуманного введения тригонометрической подстановки. Пример не вызвал серьезных затруднений, из восемнадцати работ только в одной были ошибки. Как правило, для решения учащиеся выбирали и обосновывали подстановку

.

Одним учащимся был предложен другой вариант тригонометрической подстановки

,

но само решение оказалось более громоздким.

Со вторым заданием справились все учащиеся.

В третьем задании ошибки возникли у трех учащихся из восемнадцати и были связаны с неверным отбором корней.

Вновь наибольшие затруднения вызвало задание на нахождение наибольшего и наименьшего значений выражения. Даже среди тех, кто получил верный ответ, немногие обосновали введение тригонометрической подстановки.

Этап 4. Анализ полученных результатов опытной работы.

Результаты контрольной и домашней контрольной работ можно представить в виде диаграмм.

Процент учащихся, выбравших тригонометрическую подстановку

В основном в качестве метода решения предложенных алгебраических задач учащиеся выбирали метод тригонометрической подстановки. Другим способом решали, если задание состояло в том, чтобы найти наибольшее значение выражения при заданных в системе условиях (как в контрольной работе) или если было рекомендовано решать другим способом (как в домашней контрольной работе).

Процент учащихся, верно справившихся с заданиями

Из диаграмм видно, что наибольшие затруднения вызывали у учащихся задания двух типов. Во - первых, задания на нахождение наибольшего и наименьшего значений выражения. Во - вторых, иррациональные уравнения, область допустимых значений которых можно представить неравенством , где . А вот иррациональные уравнения, область допустимых значений которых определяется неравенством , традиционно решаются лучше.

Процент учащихся, обосновавших введение тригонометрической подстановки

Во всех заданиях, где учащимся было предложено решить иррациональное уравнение, тригонометрическая подстановка была обоснована. Хуже обстояло дело с обоснованием введения тригонометрической подстановки, если речь шла о двух переменных. В этом случае учащиеся, как правило, приступали к решению, доводили его до верного ответа, но не обосновывали законность произведенной замены.

Так как только в двух случаях (в одном задании из контрольной и в одном задании из домашней контрольной работы) учащиеся предложили другое решение без использования тригонометрической подстановки

Сравним процент учащихся, решивших верно с помощью тригонометрической подстановки и без нее

Решение более привычным и отработанным способом для учащихся оказалось эффективнее, чем с помощью введения тригонометрической подстановки. И это не удивительно. Тема «Применение тригонометрической подстановки для решения алгебраических задач» является довольно сложной, речь идет о ее рассмотрении на факультативных занятиях только в классах с углубленным изучением математики. Пять факультативных занятий для того чтобы учащиеся овладели этим методом, безусловно, мало, о чем свидетельствуют результаты. Но ввиду того, что применение тригонометрической подстановки может оказать существенную помощь в решении некоторых классов задач (например, иррациональных уравнений, задач на нахождение наибольшего и наименьшего значений функции и других), желательно продолжить работу с учащимися над овладением этим методом и вернуться к нему в конце 11 класса. В пользу этого говорит еще и тот факт, что при решении предложенных задач учащиеся выбирали именно этот способ решения для получения ответа. Особенно удачно учащиеся использовали замену при решении иррациональных уравнений, видели возможность введения тригонометрической подстановки и обосновывали это введение. Сама замена стала интересной для учащихся не только тем, что позволила решить непростые конкурсные примеры, но и указала на связь между алгеброй и тригонометрией, показала, что введение тригонометрической подстановки не только не усложняет решение, а в некоторых случаях существенно упрощает его, тем самым повышая значимость самой тригонометрии в глазах учащихся.

Заключение

При проведении исследования были поставлены и решены следующие задачи:

1. Исследованы теоретические основы возможности введения тригонометрической подстановки.

2. Проведена работа по подбору и объединению в одном источнике решений с помощью тригонометрической подстановки разнообразных алгебраических заданий: уравнений, неравенств, их систем, задач с параметрами и задач на отыскание наибольшего и наименьшего значений функции. Работа включает в себя задания, решение которых с помощью тригонометрической подстановки и без нее равноценны, задания, которые не могут быть решены стандартными алгебраическими приемами без применения тригонометрической подстановки и задания, которые решаются без тригонометрической подстановки проще.

3. Проведен сравнительный анализ решения задач с помощью тригонометрической подстановки и без нее. Метод тригонометрической подстановки рассмотрен во многих источниках по математике, в том числе [3]-[6], [9]-[14], [16], [18], [22]-[25], [29]-[32], [37]-[39], [42]-[45], [47], [49], [51], [57]. Но практически ни в одном из них не был проведен сравнительный анализ решения задач с помощью тригонометрической подстановки и без нее и практически нет источников, в которых была бы представлена возможность применения тригонометрической подстановки для решения большого класса задач.

4. На основе проведенного сравнительного анализа была разработана методика изучения тригонометрической подстановки при решении алгебраических задач на факультативных занятиях по математике в старших классах с углубленным изучением математики.

5. Проведено опытное испытание эффективности разработанной методики в 10 классе ФМЛ.

Опытная работа показала, что введение факультативного курса «Применение тригонометрической подстановки для решения алгебраических задач» в классы с углубленным изучением математики оправдано. В состав диагностирующей контрольной работы, которая была проведена на завершающем занятии факультативного курса, были включены задачи, которые допускали как алгебраический способ решения, так и решение с помощью тригонометрической подстановки. Школьникам была предоставлена свобода выбора метода решения каждого задания. Результаты работы показали, что учащиеся без особого труда выделяют задачи, в которых возможно ввести тригонометрическую подстановку; применяют ее для решения трудных и очень трудных конкурсных задач; осуществляют сравнение и выбор наиболее рационального способа решения. А значит, гипотеза, сделанная в начале дипломной работы, подтвердилась. Введение материала, связанного с тригонометрической подстановкой, на факультативных занятиях в классах с углубленным изучением математики способствует развитию творческих способностей учащихся и подготавливает их к вступительным экзаменам в вузы с повышенными требованиями к математике. Единственное, над чем еще можно поработать - грамотное обоснование введенной замены.

Литература

1. Алгебра и математический анализ. 10 класс: Учебное пособие для школ и классов с углубленным изучением математики / Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд. - М.: Мнемозина, 2001. - С. 335.

2. Алгебра и математический анализ. 11 класс: Учебное пособие для школ и классов с углубленным изучением математики / Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд. - М.: Мнемозина, 2001. - С. 288.

3. Алексеев А. Тригонометрические подстановки / А. Алексеев, Л. Курляндчик // Квант. - №2. - 1995. - С. 40-42.

4. Балаян Э. Н. Репетитор по математике для поступающих в вузы / Э. Н. Балаян. - Ростов-на-Дону: Изд-во Феникс, 2003. - С. 736.

5. Болтянский В. Г. Лекции и задачи по элементарной математике / В. Г. Болтянский, Ю. В. Сидоров, М. И. Шабунин. - М.: Изд-во Наука, 1972. - С. 592.

6. Вавилов В. В. Задачи по математике. Алгебра / В. В. Вавилов, И. И. Мельников, С. Н. Олехник, П. И. Пасиченко. - М.: Наука, 1988. - С. 439.

7. Василевский А. Б. Методы решения задач / А. Б. Василевский. - Минск: Вышэйшая школа, 1974. - С. 240.

8. Василевский А. Б. Обучение решению задач: Учебное пособие для педагогических институтов / А. Б. Василевский. - Минск: Вышэйшая школа, 1988. - С. 255.

9. Вороной А. Н. Пять способов доказательства одного неравенства / А. Н. Вороной // Математика в школе. - №4. - 2000. - С. 12.

10. Вороной А. Н. Циклические системы уравнений / А. Н. Вороной // Математика в школе. - №7. - 2003. - С. 71-77.

11. Всероссийские математические олимпиады школьников: Книга для учащихся / Г. Н. Яковлев, Л. П. Купцов, С. В. Резниченко, П. Б. Гусятников. - М.: Просвещение, 1992. - С. 383.

12. Горнштейн П. И. Экзамен по математике и его подводные рифы / П. И. Горнштейн, А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. - М.: Илекса, 2004. - С. 236.

13. Горнштейн П. И. Задачи с параметрами / П. И. Горнштейн, В. Б. Полонский, М. С. Якир. - М.: Илекса, Харьков: Гимназия, 2002. - С. 336.

14. Горнштейн П. И. Тригонометрия помогает алгебре / П. И. Горнштейн. - М.: Бюро Квантум, 1995. - С. 100-103. - Приложение к ж. «Квант», №3/95.

15. Громов А. И. Математика для поступающих в вузы. Методы решения задач по элементарной математике и началам анализа / А. И. Громов, В. М. Савчин. - М.: Изд-во РУДН Народная Компания Евразийский регион, 1997. - С. 264.

16. Дорофеев Г. В. Пособие по математике для поступающих в вузы. Избранные вопросы элементарной математики / Г. В. Дорофеев, М. К. Потапов, Н. Х. Розов. - М.: Просвещение, 1976. - С. 640.

17. Епифанова Т. Н. Отыскание экстремальных значений функций различными способами / Т. Н. Епифанова // Математика в школе. - №4. - 2000. - С. 52-55.

18. Зарубежные математические олимпиады / С. В. Конягин, Г. А. Тоноян, И. Ф. Шарыгин. - М.: Наука, 1987. - С. 416.

19. Канин Е. С. Учебные математические задачи: Учебное пособие / Е. С. Канин. - Киров: Изд-во ВятскогоГГУ, 2003. - С. 191.

20. Колягин Ю. М. Задачи в обучении математике / Ю. М. Колягин. - М.: Просвещение, 1977. - С. 143.

21. Лапушкина Л. И. Системы алгебраических уравнений / Л. И. Лапушкина, М. И. Шабунин // Математика в школе. - №6. - 1998. - С. 22-26.

22. Махров В. Г. Новый репетитор по математике для старшеклассников и абитуриентов / В. Г. Махров, В. Н. Махрова. - Ростов-на-Дону: Изд-во Феникс, 2004. - С. 544.

23. Мельников И. И. Как решать задачи по математике на вступительных экзаменах / И. И. Мельников, И. Н. Сергеев. - М.: Изд-во Московского университета, 1990. - С. 303.

24. Мерзляк А. Г. Тригонометрия: Задачник по школьному курсу. 8-11 класс / А. Г. Мерзляк, В. Б. Полонский, Е. М. Рабинович. - М.: АСТ - ПРЕСС: Магистр, 1998. - С. 655.

25. Мерзляк А. Г. Неожиданный шаг или сто тринадцать красивых задач / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. - Киев: Агрофирма Александрия, 1993. - С. 59.

26. Методика преподавания математики в средней школе: Общая методика. Учебное пособие для студентов пед. ин-тов по спец. 2104 «Математика» и 2105 «Физика» / Сост. Р. С. Черкасов, А. А. Столяр. - М.: Просвещение, 1985. - С. 336.

27. Методика преподавания математики в средней школе: Частная методика: Учебное пособие для студентов пед. ин-тов по физ.-мат. Спец. / Сост. В. И. Мишин. - М.: Просвещение, 1987. - С. 414.

28. Мордкович А. Г. Беседы с учителями математики / А. Г. Мордкович. - М.: Школа - Пресс, 1995. - С. 272.

29. Морозова Е. А. Международные математические олимпиады. Задачи, итоги, решения. Пособие для учащихся / Е. А. Морозова. - М.: Просвещение, 1976. - С. 288.

30. Московский государственный университет // Математика в школе. - №10. - 2002. - С. 28-43.

31. Нараленков М. И. Вступительный экзамен по математике. Алгебра: как решать задачи: Учебно-практическое пособие / М. И. Нараленков. - М.: Изд-во Экзамен, 2003. - С. 448.

32. Олехник С. Н. Нестандартные методы решения уравнений и неравенств: Справочник / С. Н. Олехник, М. К. Потапов, П. И. Пасиченко. - М.: Изд-во МГУ, 1991. - С. 143.

33. Петров В. В. Нестандартные задачи / В. В. Петров, Е. В. Елисеева // Математика в школе. - №8. - 2001. - С. 56-59.

34. Писаревский Б. М. Задачи об экстремумах / Б. М. Писаревский // Математика в школе. - №5. - 2004. - С. 47-51.

35. Письменный Д. Т. Математика для старшеклассников / Д. Т. Письменный. - М.: Айрис, Рольф, 1996. - С. 281.

36. Пойа Д. Обучение через задачи / Д. Пойа // Математика в школе. - №3. - 1970. - С. 89-91.

37. Потапов М. К. Готовимся к экзаменам по математике: Учебное пособие для поступающих в вузы и старшеклассников / М. К. Потапов, С. Н. Олехник, Ю. В. Нестеренко. - М.: Научно - технический центр «Университетский»: АСТ - Пресс, 1997. - С. 352.

38. Потапов М. К. Конкурсные задачи по математике / М. К. Потапов, С. Н. Олехник, Ю. В. Нестеренко. - М.: ФИЗМАТЛИТ, 2001. - С. 400.

39. Потапов М. К. Математика. Методы решения задач. Для поступающих в вузы: Учебное пособие / М. К. Потапов, С. Н. Олехник, Ю. В. Нестеренко. - М.: Дрофа, 1995. - С. 336.

40. Потапов, М. К. Рассуждения с числовыми значениями при решении систем уравнений / М. К. Потапов, А. В. Шевкин // Математика в школе. - №3. - 2005. - С. 24-29.

41. Программы для общеобразоват. Школ, гимназиев, лицеев: Математика. 5-11 класс / Сост. Г. М. Кузнецова, Н. Г. Миндюк. - М.: Дрофа, 2002.- С. 320.

42. Саакян С. М. Задачи по алгебре и началам анализа для 10-11 классов / С. М. Саакян, Гольдман А. М., Денисов Д. В. - М.: Просвещение, 1990. - С. 256.

43. Смоляков А. Н. Тригонометрические подстановки в уравнения и неравенства / А. Н. Смоляков // Математика в школе. - №1. - 1996. - С.4.

44. Супрун В. П. Избранные задачи повышенной сложности по математике / В. П. Супрун. - Минск: Полымя, 1998. - С. 108.

45. Терешин Н. А. 2000 задач по алгебре и началам анализа. 10 класс / Н. А. Терешин, Т. Н. Терешина. - М.: Аквариум, 1998. - С. 256.

46. Ткачук В. В. Математика - абитуриенту: Все о вступительных экзаменах в вузы. Том 1 / В. В. Ткачук. - М.: ТЕИС, 1996. - С. 415.

47. Ткачук В. В. Математика - абитуриенту: Все о вступительных экзаменах в вузы. Том 2 / В. В. Ткачук. - М.: ТЕИС, 1996. - С. 414.

48. Фарков А. В. Математические олимпиады в школе. 5-11 класс / А. В. Фарков. - М.: Айрис-пресс, 2002. - С. 160.

49. Фирстова Н. И. Метод замены переменной при решении алгебраических уравнений / Н. И. Фирстова // Математика в школе. - №5. - 2002. - С. 68-71.

50. Фридман Л. И. Как научиться решать задачи / Л. И. Фридман, Е. Н. Турецкий. - М.: Московский психолого-социальный институт, 1999. - С. 240.

51. Черкасов О. Ю. Математика: Методические указания для поступающих в вузы / О. Ю. Черкасов, А. Г. Якушев. - М.: УНЦ ДО МГУ, 1996. - С. 368.

52. Черкасов О. Ю. Математика: Скорая помощь абитуриентам / О. Ю. Черкасов, А. Г. Якушев. - М.: Учебный центр Московский лицей, 1995. - С. 348.

53. Шабунин М. И. Математика для поступающих в вузы. Неравенства и системы неравенств / М. И. Шабунин. - М.: Аквариум, 1997. - С. 256.

54. Шабунин М. И. Математика для поступающих в вузы. Уравнения и системы уравнений / М. И. Шабунин. - М.: Аквариум, 1997. - С. 272.

55. Шарыгин И. Ф. Математика для поступающих в вузы: Учебное пособие / И. Ф. Шарыгин. - М.: Дрофа, 2000. - С. 416.

56. Шарыгин И. Ф. Математика для школьников старших классов / И. Ф. Шарыгин. - М.: Дрофа, 1995. - С. 486.

57. Шарыгин И. Ф. Решение задач: Учебное пособие для 10 класса общеобразовательных учреждений / И. Ф. Шарыгин. - М.: Просвещение, 1994. - С. 350.

Приложение

Занятие №1

Тема: применение тригонометрической подстановки для решения иррациональных уравнений.

Цели:

1. Вспомнить теоретические основы введения тригонометрической подстановки.

2. Рассмотреть применение тригонометрической подстановки для решения иррациональных уравнений в случае, когда множество значений переменной ограничено.

3. Провести сравнительный анализ решения задач с помощью тригонометрической подстановки и без нее.

Содержание:

1. Решить уравнение .

2. Решите уравнение .

3. Решить уравнение .

4. Решить уравнение .

Домашнее задание:

1. Решить уравнение .

2. Решить уравнение .

3. Решить уравнение .

Литература: [3], [4], [12], [14], [23] - [25], [31], [32], [37] - [39], [43], [44], [47] - [51], [57].

Занятие №3

Тема: применение тригонометрической подстановки для решения систем уравнений.

Цели:

1. Рассмотреть применение тригонометрической подстановки для решения сложных, олимпиадных систем.

2. Провести сравнительный анализ решения задач с помощью тригонометрической подстановки и без нее, где это возможно.

3. Привести пример системы, решить которую без тригонометрической подстановки не возможно.

Содержание:

1. Решить систему уравнений .

2. Решить систему .

3. Выяснить, сколько решений имеет система уравнений .

4. При каких значениях параметра система имеет решение .

Домашнее задание:

1. Решить систему .

2. Решить систему .

3. Сколько решений имеет система уравнений .

Литература: [3], [6] - [8], [10], [12], [14], [18], [24], [30], [43].

Занятие №4

Тема: применение тригонометрической подстановки для решения задач на отыскание наибольшего и наименьшего значений функции.

Цели:

1. Вспомнить основные методы решения задач на отыскание наибольшего и наименьшего значений функции.

2. Показать, как метод тригонометрической подстановки применяется для решения задач на нахождение наибольшего и наименьшего значений функции.

3. Провести сравнительный анализ решения задач с помощью тригонометрической подстановки и без нее.

Содержание:

1. Найти наибольшее и наименьшее значение выражения, если .

2. Найти наибольшее и наименьшее значение выражения, если .

3. Среди всех решений системы найдите такие, при которых выражение принимает наибольшее значение .

4. Выяснить, при каких значениях параметра неравенство имеет решения .

Домашнее задание:

1. Найти наибольшее и наименьшее значение выражения , если .

2. Найти наибольшее и наименьшее значение выражения, если .

3. Среди всех решений системы найти такие, при каждом из которых выражение принимает наименьшее значение

.

Литература: [4], [14], [22], [24], [31], [42].


Подобные документы

  • Изучение нестандартных методов решения задач по математике, имеющих широкое распространение. Анализ метода функциональной, тригонометрической подстановки, методов, основанных на применении численных неравенств. Решение симметрических систем уравнений.

    курсовая работа [638,6 K], добавлен 14.02.2010

  • Интегрирование выражений, зависящих от тригонометрических функций. Интегрирование рациональной функции от тригонометрической и алгебраических иррациональностей. Тригонометрические подстановки для интегралов, не выражающихся через элементарные функции.

    контрольная работа [124,8 K], добавлен 22.08.2009

  • Систематизация различных методов решения планиметрических задач. Обоснование рациональности решения планиметрической задачи методами дополнительных построений, подобия треугольников, векторного аппарата, соотношения углов и тригонометрической замены.

    реферат [727,1 K], добавлен 19.02.2014

  • Сущность метода системосовокупностей как одного из распространенных и универсальных методов решения неравенств любого типа. Обобщение метода интервалов на тригонометрической окружности. Эффективность и наглядность графического метода решения задач.

    методичка [303,7 K], добавлен 14.03.2011

  • Характеристика видов математических уравнений - алгебраических и трансцендентных, их сравнение и отличительные особенности. Возможности метода замены неизвестного при решении алгебраических уравнений, применение в стандартных и нестандартных ситуациях.

    контрольная работа [246,3 K], добавлен 21.09.2010

  • Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.

    реферат [532,7 K], добавлен 10.11.2009

  • Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.

    учебное пособие [581,1 K], добавлен 08.02.2010

  • Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.

    реферат [66,4 K], добавлен 14.08.2009

  • Исследование метода квадратных корней для симметричной матрицы как одного из методов решения систем линейных алгебраических уравнений. Анализ различных параметров матрицы и их влияния на точность решения: мерность, обусловленность и разряженность.

    курсовая работа [59,8 K], добавлен 27.03.2011

  • Алгоритм решения задач по теме "Матрицы". Исследование на совместность системы линейных алгебраических уравнений, пример их решения по правилу Крамера. Определение величины угла при вершине в треугольнике, длины вектора. Исследование сходимости рядов.

    контрольная работа [241,6 K], добавлен 19.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.