Сплайны, финитные функции

Понятие и классификация кривых Безье, их разновидности и методика, основные этапы построения. Порядок и условия применения данных кривых в компьютерной графике. Преобразование квадратичных кривых в кубические. Финитные функции. В-сплайны Шёнберга.

Рубрика Математика
Предмет Высшая математика
Вид реферат
Язык русский
Прислал(а) NorMan
Дата добавления 14.01.2011
Размер файла 456,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Понятие и свойства плоских кривых, история их исследований, способы их образования, разновидности и свойства нормали. Методы построения некоторых видов кривых, называемых "Декартов лист", лемнискаты Бернулли, улитки Паскаля, строфоиды, циссоиды Диокла.

    курсовая работа [3,1 M], добавлен 29.03.2011

  • Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.

    контрольная работа [329,5 K], добавлен 19.12.2014

  • Порядок и основные этапы построения квадратичных двумерных стационарных систем с заданными интегралами, условия их существования. Методика качественного исследования одной системы первого и второго класса построенных двумерных стационарных систем.

    дипломная работа [125,4 K], добавлен 05.09.2009

  • Общее уравнение кривой второго порядка, преобразование систем координат. Классификация кривых по инвариантам, исследование уравнения кривой второго порядка. Изучение и примеры исследования инвариант поворота и параллельного переноса систем координат.

    курсовая работа [654,1 K], добавлен 28.09.2019

  • Доказательство теоремы единственности для кривых второго порядка. Преимущества и недостатки разных способов доказательства теоремы единственности. Пучок кривых второго порядка. Методы решения теоремы единственности для поверхностей второго порядка.

    курсовая работа [302,7 K], добавлен 22.01.2011

  • Сведения о плоских кривых. Замечательные кривые третьего порядка. Классификация Ньютона кривых третьего порядка. Циссоида и ее свойства. Преобразования плоскости, переводящие кривые второго порядка в кривые третьего порядка. Преобразования Маклорена.

    дипломная работа [960,1 K], добавлен 22.04.2011

  • Система кривых Пирсона. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Примеры нахождения кривых распределения вероятностей и программное обеспечение.

    дипломная работа [230,5 K], добавлен 13.03.2003

  • Понятие и свойства плоских кривых, история их исследований. Способы образования и разновидности плоских кривых. Кривые, изучаемые в школьном курсе математики. Разработка плана факультативных занятий по математике по теме "Кривые" в профильной школе.

    дипломная работа [906,7 K], добавлен 24.02.2010

  • Преподавательская работа швейцарского математика Габриэля Крамера, введение в анализ алгебраических кривых. Система произвольного количества линейных уравнений с квадратной матрицей Крамера. Классификация и порядок математических и алгебраических кривых.

    реферат [47,6 K], добавлен 17.05.2011

  • Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.

    реферат [5,4 M], добавлен 10.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.