Интерполяционная формула Гаусса
Иоганн Карл Фридрих Гаусс - величайший математик всех времен. Интерполяционные формулы Гаусса, дающие приближенное выражение функции y=f(x) при помощи интерполяции. Области применение формул Гаусса. Основные недостатки интерполяционных формул Ньютона.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 06.12.2014 |
Размер файла | 207,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Бишкек 2014
Кыргызский Национальный Университет ИМ. Ж. Баласагына
CPC
на тему: Интерполяционная формула Гаусса
Выполнил: ст.гр. “ПМиИбк-14”
Туляев Т.T.
Преподаватель кафедры “МИиК”
Назарбаев Ф.Т.
Введение
Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг -- 23 февраля 1855, Гёттинген) немецкий математик, механик, физик, астроном и геодезист. Считается одним из величайших математиков всех времён, «королём математиков»[3]. Лауреат медали Копли (1838), иностранный член Шведской (1821) и Российской (1824) Академий наук, английского Королевского общества.
Интерполяционные формулы, формулы, дающие приближённое выражение функции при помощи интерполяции, то есть через интерполяционный многочлен степени , значения которого в заданных точках совпадают со значениями функции в этих точках. Многочлен определяется единственным образом, но в зависимости от задачи его удобно записывать различными по виду формулами.
Первая и вторая интерполяционные формулы Гаусса
интерполяционный формула гаусс
Основным недостатком интерполяционных формул Ньютона является то, что они используют лишь односторонние значения функции. На практике часто оказывается полезным использовать формулы, в которых присутствуют как последующие, так и предыдущие значения функции по отношению к ее начальному значению .
Рассмотрим равноотстоящих узлов , в которых заданы значения некоторой функции Требуется найти полином степени не выше , такой, чтобы выполнялось условие
(1)
Будем искать полином в виде
(2)
Поступая по аналогии с выводом первой интерполяционной формулы Ньютона, для коэффициентов получим следующие выражения
(3)
Введем новую переменную и, подставляя преобразованные выражения для коэффициентов (3) в соотношение (2), получим первую интерполяционную формулу Гаусса (для интерполирования вперёд)
(4)
Разности используемые в этой формуле, образуют нижнюю ломаную линию в диагональной таблице разностей 1 (см. далее)
Если полином искать в виде
то аналогично (4) можно получить вторую интерполяционную формулу Гаусса (для интерполирования назад)
(5)
Разности , используемые в этой формуле, образуют верхнюю ломаную линию в диагональной таблице разностей 1
Формулы Гаусса применяются для интерполирования в середине таблицы вблизи . При этом первая формула Гаусса (4) применяется при , а вторая (5) - при
Таблица 1
Диагональная таблица разностей
Заключение
Преимущество интерполяционной формулы Гаусса состоит в том, что указанный выбор узлов интерполяции обеспечивает наилучшую оценку остаточного члена по сравнению с любым другим выбором, а упорядоченность узлов по мере их близости к точке интерполяции уменьшает вычислительную погрешность интерполирования.
Список использованных источников
1. https://ru.wikipedia.org/wiki/Интерполяционная_формула_Гаусса
2. http://virtet.gsu.by/mod/resource/view.php?id=190
3. http://dic.academic.ru/dic.nsf/ruwiki/940993
4. https://ru.wikipedia.org/wiki/Гаусс,_Карл_Фридрих
Приложение 1
0.43 |
1.63597 |
||||||
0.09637 |
|||||||
0.48 |
1.73234 |
0.04815 |
|||||
0.14452 |
-0.03608 |
||||||
0.55 |
1.87686 |
0.01207 |
0.06243 |
||||
0.15659 |
0.02635 |
0.19084 |
|||||
0.62 |
2.03345 |
0.03842 |
-0.12841 |
||||
0.19501 |
-0.10216 |
||||||
0.70 |
2.22846 |
-0.06374 |
|||||
0.13127 |
|||||||
0.75 |
2.35973 |
(0.645)=2.03345+0.19501*((0.645-0.62)/0.05) -
-(-0.06374*((0.645-0.62)/0.05) *((((0.645-0.62)/0.05)-1)/2) =
=2, 1389225
Приложение 2
0.41 |
2,57418 |
||||||
0.46 |
2,32513 |
||||||
0.52 |
2,09336 |
||||||
-0,23133 |
|||||||
0.60 |
1,86203 |
0,11856 |
|||||
-0,11277 |
|||||||
0.65 |
1,74926 |
-0,01551 |
|||||
-0,12828 |
|||||||
0.72 |
1,62098 |
(0,673)= 1,74926+(-1,12828)*(( 0,673-0.65)/0,07)-
-(-1,01551*((0,673-0.65)/0,07)*(((( 0,673-0.65)/0,07)-1)/2)=1,712954
Размещено на Allbest.ru
Подобные документы
Интерполирование функции в точке, лежащей в окрестности середины интервала. Интерполяционные формулы Гаусса. Формула Стирлинга как среднее арифметическое интерполяционных формул Гаусса. Кубические сплайн-функции как математическая модель тонкого стержня.
презентация [88,1 K], добавлен 18.04.2013Обзор квадратурных формул Гаусса, их определение, интегральные конструкции, примеры, четко описывающие квадратуры Гаусса. Особенности использования некоторых алгоритмов, позволяющих отследить ход решений задач, использующих квадратурные формулы Гаусса.
контрольная работа [309,6 K], добавлен 16.12.2015Делимость в кольце чисел гаусса. Обратимые и союзные элементы. Деление с остатком. Алгоритм евклида. Основная теорема арифметики. Простые числа гаусса. Применение чисел гаусса.
дипломная работа [209,2 K], добавлен 08.08.2007Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.
лабораторная работа [481,0 K], добавлен 14.10.2013Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.
курсовая работа [434,5 K], добавлен 14.03.2014Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.
контрольная работа [397,2 K], добавлен 13.12.2010Аппроксимация и теория приближений, применение метода наименьших квадратов для оценки характера приближения. Квадратичное приближение таблично заданной функции по дискретной норме Гаусса. Интегральное приближение функции, которая задана аналитически.
реферат [82,0 K], добавлен 05.09.2010Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.
лекция [45,4 K], добавлен 02.06.2008Нахождение уравнения гиперболы при заданном значении вещественной полуоси. Вычисление предела функции и ее производных. Составление уравнения нормали к кривой. Решение системы алгебраических уравнений методом Гаусса и при помощи формулы Крамера.
контрольная работа [871,9 K], добавлен 12.10.2014Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат [99,0 K], добавлен 05.09.2010