Методы канонических корреляций
Сущность, цели применения, основные достоинства метода канонических корреляций. Оценка тесноты связи между новыми каноническими переменными U и V. Максимальный канонический коэффициент корреляции, методика его расчета. Использование критерия Бартлетта.
Рубрика | Математика |
Предмет | Статистика |
Вид | презентация |
Язык | русский |
Прислал(а) | Лина |
Дата добавления | 10.02.2015 |
Размер файла | 109,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Функциональные и корреляционные зависимости. Сущность корреляционной связи. Методы выявления наличия корреляционной связи между двумя признаками и измерение степени ее тесноты. Построение корреляционной таблицы. Уравнение регрессии и способы его расчета.
контрольная работа [55,2 K], добавлен 23.07.2009Нахождение координат треугольника по заданным вершинам. Условия перпендикулярности, параллельности и совпадения прямых. Уравнение плоскости, проходящей через точку. Составление канонических уравнений прямой, кривой второго порядка и поверхности.
контрольная работа [259,7 K], добавлен 28.03.2014Доказательство коллинеарности и компланарности векторов. Проведение расчета площади параллелограмма, построенного на векторах а и в, объема тетраэдра, косинуса угла, точки пресечения прямой и плоскости. Определение канонических уравнений прямой.
контрольная работа [87,7 K], добавлен 21.02.2010Понятие комплекса случайных величин, закона их распределения и вероятностной зависимости. Числовые характеристики случайных величин: математическое ожидание, момент, дисперсия и корреляционный момент. Показатель интенсивности связи между переменными.
курсовая работа [2,4 M], добавлен 07.02.2011Анализ исследований в области лечения диабета. Использование классификаторов машинного обучения для анализа данных, определение зависимостей и корреляции между переменными, значимых параметров, а также подготовка данных для анализа. Разработка модели.
дипломная работа [256,0 K], добавлен 29.06.2017Характеристика экзогенных и эндогенных переменных. Теорема Гаусса-Маркова. Построение двухфакторного и однофакторных уравнения регрессии. Прогнозирование значения результативного признака. Оценка тесноты связи между результативным признаком и факторами.
курсовая работа [575,5 K], добавлен 19.05.2015Показатели тесноты связи. Смысл коэффициентов регрессии и эластичности. Выявление наличия или отсутствия корреляционной связи между изучаемыми признаками. Расчет цепных абсолютных приростов, темпов роста абсолютного числа зарегистрированных преступлений.
контрольная работа [1,5 M], добавлен 02.02.2014В каждой из двух урн содержится 6 черных и 4 белых шаров. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
контрольная работа [619,9 K], добавлен 19.05.2003Понятие корреляционного момента двух случайных величин. Математическое ожидание произведения независимых случайных величин Х и У. Степень тесноты линейной зависимости между ними. Абсолютное значение коэффициента корреляции, его расчет и показатель.
презентация [92,4 K], добавлен 01.11.2013Задачи которые решает корреляционный анализ. Определение формы связи - установление математической формы, в которой выражается связь. Измерение тесноты, т.е. меры связи между признаками с целью установления степени влияния данного фактора на результат.
реферат [67,3 K], добавлен 09.11.2010