Элементы теории функций комплексной переменной и операционного исчисления
Определение плоскости комплексного переменного, последовательностей комплексных чисел и пределов последовательностей. Дифференцирование функций, условия Коши, интеграл от функции. Числовые и степенные ряды, разложение функций, операционные исчисления.
Рубрика | Математика |
Предмет | Математический анализ |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Лариса |
Дата добавления | 17.11.2010 |
Размер файла | 188,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Вычисление пределов гиперболических функций. Дифференцирование сложной функции. Разложение гиперболических функций по формуле Тейлора. Свойства неопределенного интеграла, интегрирование функций. Гиперболические функции комплексного переменного.
дипломная работа [2,8 M], добавлен 11.01.2011Пределы последовательностей и функций. Производная и дифференциал. Геометрические изложения и дифференцированные исчисления (построение графиков). Неопределенный интеграл. Определенный интеграл. Функции нескольких переменных, дифференцированных исчислений
контрольная работа [186,9 K], добавлен 11.06.2003Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.
методичка [96,6 K], добавлен 25.12.2010Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Изображения простейших функций. Отыскание оригинала по изображению. Задача Коши для обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами.
дипломная работа [162,3 K], добавлен 27.05.2008Учебно-методическое пособие дает возможность изучить необходимые теоретические сведения и получить практические навыки по решению задач, связанных с функциями комплексного переменного. Применение комплексных чисел при решении алгебраических уравнений.
методичка [2,7 M], добавлен 23.12.2009Разложение в ряд Фурье. Определение функции и нахождение коэффициентов разложения. Проведение замены в интеграле. Условия теоремы о разложении функции в ряд Фурье. Примеры взятия интеграла по частям. Разложение в ряд Фурье четных и нечетных функций.
презентация [73,1 K], добавлен 18.09.2013Особенности дифференциального исчисления. Использование правила Коши при разложении в ряд функций cos x и sin x для перемножения рядов. Запись элементов бесконечной матрицы в форме последовательности. Абсолютная сходимость рядов, порождаемых матрицей.
курсовая работа [1012,0 K], добавлен 06.08.2013Изучение способов нахождения пределов функций и их производных. Правило дифференцирования сложных функций. Исследование поведения функции на концах заданных промежутков. Вычисление площади фигуры при помощи интегралов. Решение дифференциальных уравнений.
контрольная работа [75,6 K], добавлен 23.10.2010Нахождение производных функций, построение графика функции с помощью методов дифференциального исчисления, нахождение точки пересечения с осями координат. Исследование функции на возрастание и убывание, нахождение интегралов, установка их расходимости.
контрольная работа [130,5 K], добавлен 09.04.2010Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.
реферат [89,3 K], добавлен 08.06.2010