Степенные ряды
Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 08.06.2010 |
Размер файла | 89,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2
ВЫСШАЯ МАТЕМАТИКА
Степенные ряды
Содержание
1. Определение степенного ряда. Теорема Абеля
2. Свойства степенных рядов
3. Ряды Тейлора, Маклорена для функций
4. Разложение некоторых элементарных функций в ряд Маклорена
5. Приложения степенных рядов
1. Определение степенного ряда. Теорема Абеля
Степенные ряды являются частным случаем функциональных рядов.
Определение 1.1. Степенным рядом называется функциональный ряд вида .(1.1)
Здесь - постоянные вещественные числа, называемые коэффициентами степенного ряда; а - некоторое постоянное число, х - переменная, принимающая значения из множества действительных чисел.
При степенной ряд (1.1) принимает вид
. (1.2)
Степенной ряд (1.1) называют рядом по степеням разности , ряд (1.2) - рядом по степеням х.
Если переменной х придать какое-либо значение, то степенной ряд (1.1) (или (1.2)) превращается в числовой ряд, который может сходиться или расходиться.
Определение 1.2. Областью сходимости степенного ряда называется множество тех значений х, при которых степенной ряд сходится.
Ряд (1.1) с помощью подстановки приводится к более простому виду (1.2), поэтому вначале будем рассматривать степенные ряды вида (1.2).
Для нахождения области сходимости степенного ряда важную роль играет следующая теорема.
Теорема 1.1 (Теорема Абеля):
если степенной ряд (1.2) сходится при , то он абсолютно сходится при всех значениях х, удовлетворяющих неравенству ; если же ряд (1.2) расходится при , то он расходится при всех значениях х, удовлетворяющих неравенству .
Теорема Абеля дает ясное представление о структуре области сходимости степенного ряда.
Теорема 1.2:
область сходимости степенного ряда (1.2) совпадает с одним из следующих интервалов:
1) ; 2) ; 3) ; 4) ,
где R - некоторое неотрицательное действительное число или .
Число R называется радиусом сходимости, интервал - интервалом сходимости степенного ряда (1.2).
Если , то интервал сходимости представляет собой всю числовую ось .
Если , то интервал сходимости вырождается в точку .
Замечание: если - интервал сходимости для степенного ряда (1.2), то - интервал сходимости для степенного ряда (1.1).
Из теоремы 1.2 следует, что для практического нахождения области сходимости степенного ряда (1.2) достаточно найти его радиус сходимости R и выяснить вопрос о сходимости этого ряда на концах интервала сходимости , т. е. при и .
Радиус сходимости R степенного ряда можно найти по одной из следующих формул:
формула Даламбера:
;(1.3)
формула Коши:
.(1.4)
Если в формуле Коши , то полагают , если , то полагают .
Пример 1.1. Найти радиус сходимости, интервал сходимости и область сходимости степенного ряда .
Решение
Найдем радиус сходимости данного ряда по формуле
В нашем случае
, .
Тогда .
Следовательно, интервал сходимости данного ряда имеет вид .
Исследуем сходимость ряда на концах интервала сходимости.
При степенной ряд превращается в числовой ряд
.
который расходится как гармонический ряд.
При степенной ряд превращается в числовой ряд
.
Это - знакочередующийся ряд, члены которого убывают по абсолютной величине и . Следовательно, по признаку Лейбница этот числовой ряд сходится.
Таким образом, промежуток - область сходимости данного степенного ряда.
2. Свойства степенных рядов
Степенной ряд (1.2) представляет собой функцию , определенную в интервале сходимости , т. е.
.
Приведем несколько свойств функции .
Свойство 1. Функция является непрерывной на любом отрезке , принадлежащем интервалу сходимости .
Свойство 2. Функция дифференцируема на интервале , и ее производная может быть найдена почленным дифференцированием ряда (1.2), т. е.
,
для всех .
Свойство 3. Неопределенный интеграл от функции для всех может быть получен почленным интегрированием ряда (1.2), т. е.
для всех .
Следует отметить, что при почленном дифференцировании и интегрировании степенного ряда его радиус сходимости R не меняется, однако его сходимость на концах интервала может измениться.
Приведенные свойства справедливы также и для степенных рядов (1.1).
Пример 2.1. Рассмотрим степенной ряд
.
Область сходимости этого ряда, как показано в примере 1.1, есть промежуток .
Почленно продифференцируем этот ряд:
.(2.1)
По свойству 2 интервал сходимости полученного степенного ряда (2.1) есть интервал .
Исследуем поведение этого ряда на концах интервала сходимости, т. е. при и при .
При степенной ряд (2.1) превращается в числовой ряд
.
Этот числовой ряд расходится, так как не выполняется необходимый признак сходимости : , который не существует.
При степенной ряд (2.1) превращается в числовой ряд
,
который также расходится, так как не выполняется необходимый признак сходимости.
Следовательно, область сходимости степенного ряда, полученного при почленном дифференцировании исходного степенного ряда, изменилась и совпадает с интервалом .
3. Ряды Тейлора, Маклорена для функций
Пусть - дифференцируемая бесконечное число раз функция в окрестности точки , т. е. имеет производные любых порядков.
Определение 3.1. Рядом Тейлора функции в точке называется степенной ряд
. (3.1)
В частном случае при ряд (3.1) называется рядом Маклорена:
. (3.2)
Возникает вопрос: в каких случаях ряд Тейлора для дифференцированной бесконечное число раз функции в окрестности точки совпадает с функцией ?
Возможны случаи, когда ряд Тейлора функции сходится, однако его сумма не равна .
Приведем достаточное условие сходимости ряда Тейлора функции к этой функции.
Теорема 3.1:
если в интервале функция имеет производные любого порядка и все они по абсолютной величине ограничены одним и тем же числом, т. е. , то ряд Тейлора этой функции сходится к для любого х из этого интервала , т. е. имеет место равенство
.
Для выяснения выполнения этого равенства на концах интервала сходимости требуются отдельные исследования.
Следует отметить, что если функция разлагается в степенной ряд, то этот ряд является рядом Тейлора (Маклорена) этой функции, причем это разложение единственно.
4. Разложение некоторых элементарных функций в ряд Маклорена
1. . Для этой функции , .
По формуле (3.2) составим ряд Маклорена данной функции:
. (3.3)
Найдем радиус сходимости ряда (3.3) по формуле (1.3):
.
Следовательно, ряд (3.3) сходится при любом значении .
Все производные функции на любом отрезке ограничены, т. е.
.
Поэтому, согласно теореме 3.1, имеет место разложение
. (3.4)
2. . Для этой функции , , .
Отсюда следует, что при производные четного порядка равны нулю, а производные нечетного порядка чередуют знак с плюса на минус.
По формуле (3.2) составим ряд Маклорена:
.
При любом фиксированном значении этот ряд сходится как знакочередующийся по признаку Лейбница. При этом
.
Поэтому, согласно теореме 3.1, имеет место разложение
. (3.5)
3. . Воспользуемся разложением (3.5) в ряд Маклорена функции и свойством 2 о дифференцировании степенного ряда. Имеем
. |
(3.6) |
Поскольку при почленном дифференцировании интервал сходимости степенного ряда не изменяется, то разложение (3.6) имеет место при любом .
Приведем без доказательства разложения других элементарных функций в ряды Маклорена.
4.
- биномиальный ряд ( - любое действительное число).
Если - положительное целое число, то получаем бином Ньютона:
.
- логарифмический ряд.
.
5. Приложения степенных рядов
Степенные ряды находят применение в таких задачах, как приближенное вычисление функций с заданной степенью точности, определенных интегралов, решение дифференциальных уравнений и др.
Приближенное значение функции вычисляют, заменяя ряд Маклорена этой функции конечным числом его членов.
Приведем приближенные формулы для вычисления некоторых наиболее часто встречающихся функций при достаточно малых значениях х:
; ; ; ;
; .
Литература
1. Высшая математика: Общий курс: Учебник - 2-е изд., перераб. / А.И. Яблонский, А.В. Кузнецов, Е.И. Шилкина и др.; Под общ. ред. С.А. Самаля. - Мн.: Выш. шк., 2000.- 351 с.
2. Марков Л.Н., Размыслович Г.П. Высшая математика. Ч. 2. Основы математического анализа и элементы дифференциальных уравнений. - Мн.: Амалфея, 2003. - 352 с.
Подобные документы
Понятие и особенности определения функциональных рядов. Специфика выражения радиуса сходимости степенного ряда через его коэффициенты. Способы нахождения его области и интервала сходимости. Логический ход математического доказательства теоремы Абеля.
презентация [86,5 K], добавлен 18.09.2013Исследование сходимости числового ряда. Использование признака Даламбера. Исследование на сходимость знакочередующегося ряда. Сходимость рядов по признаку Лейбница. Определение области сходимости степенного ряда. Сходимость ряда на концах интервала.
контрольная работа [131,9 K], добавлен 14.12.2012Область сходимости степенного ряда. Нахождение пределов, вычисление определенных интегралов. Применение степенных рядов в приближенных значениях. Изучение особенностей решения дифференциальных уравнений. Достаточное условие разложимости функции в ряд.
курсовая работа [1,3 M], добавлен 21.05.2019Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.
методичка [514,1 K], добавлен 26.06.2010Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.
методичка [96,6 K], добавлен 25.12.2010Определение числового ряда, его основные свойства. Ряды геометрической прогрессии. Исследование на сходимость гармонического ряда. Ряды с положительными членами. Признаки сходимости. Знакочередующиеся и знакопеременные ряды. Признак сходимости Лейбница.
лекция [137,2 K], добавлен 27.05.2010Степенные ряды. Радиус сходимости. Ряды Лорана. Полюса и особые точки. Интегрирование дифференциальных уравнений при помощи степенных рядов. Общее дифференциальное уравнение Риккати. Исследование решений в окрестности полюса и существенно особой точки.
дипломная работа [252,1 K], добавлен 15.12.2012Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.
реферат [190,9 K], добавлен 06.12.2010Исследование числовых рядов на сходимость. Область сходимости для разных степенных рядов. Разложение функции в ряд Тейлора. Нормы сеточной функции. Исследование устойчивости разностной схемы для однородного уравнения. Совокупность разностных уравнений.
курсовая работа [586,9 K], добавлен 19.04.2011Метод степенных рядов, применяемый для суммирования расходящихся рядов. Формулировка Пуассона, теорема Абеля. Метод средних арифметических и метод Чезаро. Знакопостоянный ряд натуральных чисел. Взаимоотношение между методами Пуассона-Абеля и Чезаро.
реферат [313,4 K], добавлен 11.04.2014