Числовые и функциональные ряды

Исследование сходимости числового ряда. Использование признака Даламбера. Исследование на сходимость знакочередующегося ряда. Сходимость рядов по признаку Лейбница. Определение области сходимости степенного ряда. Сходимость ряда на концах интервала.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 14.12.2012
Размер файла 131,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра программного обеспечения информационных технологий

Факультет ФНиДО

Специальность ПОИТ

Контрольная работа № 9

по дисциплине «Высшая математика»

Тема работы: «Числовые и функциональные ряды»

Выполнил студент: Добровольский Е.А.

группа 001021

Зачетная книжка № 001021-23

Минск 2011

Задача 413

Исследовать сходимость числового ряда.

Решение:

Необходимый признак сходимости не выполняется - ряд расходится.

Ответ: расходится

Задача 423

Исследовать на сходимость ряд.

Решение:

Воспользуемся признаком Даламбера:

Ряд сходится.

Ответ: сходится

Задача 433

Исследовать на сходимость ряд.

Решение:

Соответствующий несобственный интеграл:

Ряд расходится, так как расходится соответствующий несобственный интеграл

Ответ: расходится

Задача 443

Исследовать на сходимость знакочередующийся ряд.

сходимость ряд лейбниц даламбер

Решение:

По признаку Лейбница ряд расходится

Ответ: расходится.

Задача 453

Найти область сходимости степенного ряда.

Решение:

Найдем радиус сходимости ряда:

Интервал сходимости:

Исследуем сходимость ряда на концах интервала:

При

Это знакочередующийся ряд

По признаку Лейбница ряд расходится

При :

Необходимый признак сходимости не выполняется - ряд расходится

Область сходимости:

Ответ:

Задача 463

Вычислить определенный интеграл с точностью до 0,001. Для этого подынтегральную функцию следует разложить в ряд, который затем почленно проинтегрировать.

Решение:

Функцию можно разложить в ряд Макклорена следующим образом:

Тогда подынтегральная функция:

Искомый интеграл:

Значение 5-го члена ряда меньше заданной погрешности, следовательно, остаток ряда не превосходит заданной погрешности:

Ответ:

Размещено на Allbest.ru


Подобные документы

  • Определение интервала сходимости ряда. Сходимость ряда на концах интервала по второму признаку сравнения положительных рядов и по признаку Лейбница. Решение дифференциальных уравнений по методу Бернулли. Методы нахождения неопределённого интеграла.

    контрольная работа [73,0 K], добавлен 24.04.2013

  • Определение числового ряда, его основные свойства. Ряды геометрической прогрессии. Исследование на сходимость гармонического ряда. Ряды с положительными членами. Признаки сходимости. Знакочередующиеся и знакопеременные ряды. Признак сходимости Лейбница.

    лекция [137,2 K], добавлен 27.05.2010

  • Решение неравенств и определение области сходимости рядов по признаку Даламбера и теореме Лейбница для знакопеременных рядов. Условия и пределы сходимости ряда. Исследование границ интервала. Проверка условия Лейбница при знакочередующемся ряде.

    контрольная работа [127,2 K], добавлен 07.09.2010

  • Основные понятия числового и знакопеременного ряда. Необходимые и достаточные признаки сходимости. Признак Лейбница. Исследование на абсолютную и условную сходимость ряда. Действия с суммой бесконечного числа слагаемых, расстановка скобок. Формула Эйлера.

    курсовая работа [501,8 K], добавлен 12.06.2014

  • Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.

    реферат [190,9 K], добавлен 06.12.2010

  • Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.

    методичка [514,1 K], добавлен 26.06.2010

  • Понятие и особенности определения функциональных рядов. Специфика выражения радиуса сходимости степенного ряда через его коэффициенты. Способы нахождения его области и интервала сходимости. Логический ход математического доказательства теоремы Абеля.

    презентация [86,5 K], добавлен 18.09.2013

  • Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.

    реферат [89,3 K], добавлен 08.06.2010

  • Условия и анализ заданий по математике: найти сумму ряда, область сходимости функционального ряда, исследовать ряд на сходимость, вычислить сумму ряда с точностью альфа, используя метод неопределённых коэффициентов, признак Даламбера и признак Лейбница.

    контрольная работа [266,9 K], добавлен 27.12.2010

  • Понятие знакочередующихся рядов. Последовательность частичных сумм четного и нечетного числа членов. Исследование сходимости ряда. Проверка выполнения признака Лейбница. Погрешность при приближенном вычислении суммы сходящегося знакочередующегося ряда.

    презентация [82,8 K], добавлен 18.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.