Ряды с членами произвольного знака

Понятие знакочередующихся рядов. Последовательность частичных сумм четного и нечетного числа членов. Исследование сходимости ряда. Проверка выполнения признака Лейбница. Погрешность при приближенном вычислении суммы сходящегося знакочередующегося ряда.

Рубрика Математика
Вид презентация
Язык русский
Дата добавления 18.09.2013
Размер файла 82,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Исследование сходимости числового ряда. Использование признака Даламбера. Исследование на сходимость знакочередующегося ряда. Сходимость рядов по признаку Лейбница. Определение области сходимости степенного ряда. Сходимость ряда на концах интервала.

    контрольная работа [131,9 K], добавлен 14.12.2012

  • Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.

    реферат [190,9 K], добавлен 06.12.2010

  • Определение числового ряда, его основные свойства. Ряды геометрической прогрессии. Исследование на сходимость гармонического ряда. Ряды с положительными членами. Признаки сходимости. Знакочередующиеся и знакопеременные ряды. Признак сходимости Лейбница.

    лекция [137,2 K], добавлен 27.05.2010

  • Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.

    методичка [514,1 K], добавлен 26.06.2010

  • Решение неравенств и определение области сходимости рядов по признаку Даламбера и теореме Лейбница для знакопеременных рядов. Условия и пределы сходимости ряда. Исследование границ интервала. Проверка условия Лейбница при знакочередующемся ряде.

    контрольная работа [127,2 K], добавлен 07.09.2010

  • Числовой ряд - бесконечная последовательность чисел, соединенных знаком сложения. Сумма n первых членов ряда. Функция натурального аргумента. Свойства сходящихся и расходящихся рядов. Понятие и формула расчета n-ного остатка. Поиск суммы исходного ряда.

    презентация [123,7 K], добавлен 18.09.2013

  • Основные понятия числового и знакопеременного ряда. Необходимые и достаточные признаки сходимости. Признак Лейбница. Исследование на абсолютную и условную сходимость ряда. Действия с суммой бесконечного числа слагаемых, расстановка скобок. Формула Эйлера.

    курсовая работа [501,8 K], добавлен 12.06.2014

  • Основное свойство рядов с неотрицательными членами. Необходимое и достаточное условие сходимости. Предельный признак сравнения. Расходящийся гармонический ряд. Ряды с положительными членами; определение конечного предела отношения их общих членов.

    презентация [215,8 K], добавлен 18.09.2013

  • Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.

    реферат [89,3 K], добавлен 08.06.2010

  • Понятие и особенности определения функциональных рядов. Специфика выражения радиуса сходимости степенного ряда через его коэффициенты. Способы нахождения его области и интервала сходимости. Логический ход математического доказательства теоремы Абеля.

    презентация [86,5 K], добавлен 18.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.