Типовой расчет

Условия и анализ заданий по математике: найти сумму ряда, область сходимости функционального ряда, исследовать ряд на сходимость, вычислить сумму ряда с точностью альфа, используя метод неопределённых коэффициентов, признак Даламбера и признак Лейбница.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 27.12.2010
Размер файла 266,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Найти сумму ряда:

Решение.

Разложим знаменатель на множители.

Значит,

Разложим дробь , используя метод неопределённых коэффициентов.

то есть:

, ,

Следовательно,

Тогда, исходный ряд примет вид:

Найдём n - первые членов ряда, записывая дроби с одинаковыми знаменателями друг под другом:

=

=

=

=

=

=

=

=

Сложим n - первых членов ряда и найдём их сумму.

.

Тогда искомая сумма равна:

.

Ответ: .

2. Найти сумму ряда:

Решение.

Разложим дробь , используя метод неопределённых коэффициентов.

то есть:

, , ,

Следовательно,

Тогда, исходный ряд примет вид:

Найдём n - первых членов ряда , записывая дроби с одинаковыми знаменателями, друг под другом:

=

=

=

=

=

=

=

=

Сложим n - первых членов ряда

и найдём их сумму.

.

Тогда искомая сумма равна:

Ответ: .

3. Исследовать ряд на сходимость

Решение.

Так как , то рассмотрим ряд

, тогда

Воспользуемся признаком Даламбера.

,

Тогда,

Так как , то ряд сходится. Значит, исходный ряд сходится по теореме о сравнении рядов.

Ответ: Ряд сходится.

4. Исследовать ряд на сходимость

Решение.

Преобразуем n - член этого ряда.

Сравним ряд с рядом , пользуясь предельным признаком сравнения:

,

Тогда,

Поскольку А = 1 (0<A<+?) - действительное число. Следовательно, ряды либо сходятся, либо расходятся. Ряд - является рядом Дирихле. Так как б = 3 > 1, то данный ряд сходится. Следовательно, и сравниваемый ряд тоже сходится.

Ответ: ряд сходится.

5. Исследовать ряд на сходимость

Решение.

Воспользуемся признаком Даламбера.

,

Находим m по формуле:

Тогда:

Так как , то ряд расходится.

Ответ: ряд расходится.

6. Исследовать ряд на сходимость

Решение.

Рассмотрим ряд

.

Поскольку при :

Воспользуемся признаком Даламбера.

,

Находим m по формуле:

Тогда:

Так как , то ряд сходится.

Согласно признаку сравнения сходится и ряд .

Ответ: ряд сходится.

7. Вычислить сумму ряда с точностью б..

б. = 0,001.

Решение.

Прежде чем находить сумму ряда необходимо убедиться, что данный ряд сходится. Проверим исходный ряд на сходимость.

- числовой знакочередующейся.

Воспользуемся признаком Лейбница:

1)

2)

Следовательно, ряд условно сходится.

Проверим абсолютную сходимость ряда . Рассмотрим ряд .

Воспользуемся признаком Даламбера:

,

Находим m по формуле:

Тогда:

Следовательно, ряд

сходится абсолютно.

Вычисляем члены ряда с точностью до 4 цифр после запятой до тех пор, пока какой-нибудь член ряда по модулю не будет меньше б. = 0,001:

а1 = -1,5 а2 = 0,1042 а3 = - 0,0016 а4 = 0,0000093

Для приближённого вычисления ряда достаточно первых трех членов ряда (по следствию признака Лейбница: сумма сходящегося знакопеременного числового ряда не превышает его первого члена). Следовательно, ошибка при вычислении не превысит 0,0000093, а, значит, и . Требуемая точность достигнута.

Следовательно:

.

Ответ: .

8. Найти область сходимости функционального ряда

Решение.

Рассмотрим два интервала:

1)

Проверим необходимый признак сходимости рядов:

Необходимый признак не выполняется. Следовательно, при ряд расходится.

2) , то есть

Проверим необходимый признак сходимости рядов:

Необходимый признак не выполняется. Следовательно, при ряд расходится.

При имеем:

то есть ряд расходится.

Окончательно, получаем ряд расходится при любом Х

Ответ:

9. Найти область сходимости функционального ряда

Решение.

Воспользуемся признаком Даламбера:

.

В данном примере:

,

.

Следовательно, ряд сходится при любом Х, т.е.

Ответ: .

10. Найти сумму ряда:

Решение.

Найдём область абсолютной сходимости ряда, пользуясь признаком Даламбера:

то есть . Ряд сходится для тех значений Х, для которых , то есть , .

При ряд расходится, так как .

Следовательно, .

Перепишем данный ряд:

Обозначим сумму трёх рядов через , и соответственно, тогда

.

Определяем область сходимости этих рядов, пользуясь признаком Даламбера:

1) :

то есть . Ряд сходится для тех значений Х, для которых , то есть , .

Следовательно, .

2) :

то есть . Ряд сходится для тех значений Х, для которых , то есть , .

Следовательно, .

3) :

то есть . Ряд сходится для тех значений Х, для которых , то есть , .

Следовательно, .

Найдём сумму ряда .

Это сумма бесконечной геометрической прогрессии: , тогда:

.

Найдём сумму ряда .

.

Обозначим сумму ряда в скобках за и проинтегрируем:

.

Продифференцируем :

.

Отсюда:

сумму ряда .

.

Обозначим сумму ряд в скобках за и проинтегрируем:

.

Тогда, продифференцируем :

Отсюда:

.

Следовательно:

для всех .

Ответ: для всех .


Подобные документы

  • Исследование сходимости числового ряда. Использование признака Даламбера. Исследование на сходимость знакочередующегося ряда. Сходимость рядов по признаку Лейбница. Определение области сходимости степенного ряда. Сходимость ряда на концах интервала.

    контрольная работа [131,9 K], добавлен 14.12.2012

  • Определение числового ряда, его основные свойства. Ряды геометрической прогрессии. Исследование на сходимость гармонического ряда. Ряды с положительными членами. Признаки сходимости. Знакочередующиеся и знакопеременные ряды. Признак сходимости Лейбница.

    лекция [137,2 K], добавлен 27.05.2010

  • Основные понятия числового и знакопеременного ряда. Необходимые и достаточные признаки сходимости. Признак Лейбница. Исследование на абсолютную и условную сходимость ряда. Действия с суммой бесконечного числа слагаемых, расстановка скобок. Формула Эйлера.

    курсовая работа [501,8 K], добавлен 12.06.2014

  • Решение неравенств и определение области сходимости рядов по признаку Даламбера и теореме Лейбница для знакопеременных рядов. Условия и пределы сходимости ряда. Исследование границ интервала. Проверка условия Лейбница при знакочередующемся ряде.

    контрольная работа [127,2 K], добавлен 07.09.2010

  • Определение условий сходимости положительного ряда и описание свойств гармонических рядов Дирихле. Изучение теорем сравнения рядов и описание схемы Куммера для вывода из нее признаков сравнения ряда. Вывод признаков сравнения Даламбера, Раабе и Бертрана.

    курсовая работа [263,6 K], добавлен 14.06.2015

  • Определение интервала сходимости ряда. Сходимость ряда на концах интервала по второму признаку сравнения положительных рядов и по признаку Лейбница. Решение дифференциальных уравнений по методу Бернулли. Методы нахождения неопределённого интеграла.

    контрольная работа [73,0 K], добавлен 24.04.2013

  • Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.

    методичка [514,1 K], добавлен 26.06.2010

  • Первое упоминание и использование числового ряда, его понятие и структура, этапы и направления дальнейшего исследования. Задачи, приводящие к понятию числового ряда и те, в которых он использовался. Признак Даламбера и Коши, Маклорена и сравнения.

    курсовая работа [114,2 K], добавлен 01.10.2014

  • Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.

    реферат [190,9 K], добавлен 06.12.2010

  • Понятие знакочередующихся рядов. Последовательность частичных сумм четного и нечетного числа членов. Исследование сходимости ряда. Проверка выполнения признака Лейбница. Погрешность при приближенном вычислении суммы сходящегося знакочередующегося ряда.

    презентация [82,8 K], добавлен 18.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.