Нормированное пространство. Банахово пространство
Общая теория топологических и векторных пространств, внутренняя логика развития; аксиоматика. Структура построения нормированного пространства; рассмотрение и развитие понятия банахова пространства как определённого типа векторных пространств с нормой.
Рубрика | Математика |
Предмет | Высшая математика (функциональный анализ) |
Вид | реферат |
Язык | русский |
Прислал(а) | Ванжа Галина |
Дата добавления | 11.01.2011 |
Размер файла | 14,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Наделение множества метрикой, основные аксиомы метрического пространства. Равномерная метрика, нормы элементов и линейное пространство. Фундаментальная последовательность элементов линейного нормированного пространства. Понятие банахова пространства.
реферат [375,9 K], добавлен 04.12.2011Понятие и признаки метрического пространства. Свойства топологических пространств. Замкнутые множества: внутренние, внешние и граничные точки. Топологические преобразования топологических пространств. Понятие и содержание двумерного многообразия.
курсовая работа [481,4 K], добавлен 28.04.2011Основные понятия и теоремы. Свойства метризуемых пространств. Примеры метризуемых и неметризуемых пространств. Метризуемое пространство хаусдорфово. Метризуемое пространство нормально. Выполняется первая аксиома счетности.
дипломная работа [273,3 K], добавлен 08.08.2007Непрерывные отображения топологических пространств. Связность топологических пространств. Компактность топологических пространств. Связность непрерывных отображений. Замкнутые отображения. Связь связности и послойной связности.
курсовая работа [140,7 K], добавлен 08.08.2007Элементы общей теории многомерных пространств. Понятие векторного многомерного пространства на основе аксиоматики Вейля. Евклидово векторное пространство. Четырёхмерное пространство, его пределение и исследование. Применение многомерной геометрии.
дипломная работа [1,0 M], добавлен 24.02.2010Определение и структурные уравнения аффинной связности. Экспоненциальные отображения в теории пространств. Ковариантное дифференцирование и классические формулировки. Аффинное пространство n измерений. Точечно-векторная аксиоматика аффинного пространства.
курсовая работа [167,8 K], добавлен 23.10.2012Понятие и характеристика линейного пространства, его главные свойства и особенности. Исследование аксиом векторного пространства. Анализ отличий и признаков векторного подпространства. Базис и формулы линейного пространств, определение его размерности.
реферат [249,4 K], добавлен 21.01.2011Клеточные разбиения классических пространств. Важность для геометрии и топологии клеточного разбиения многообразий Грассмана. Гомотопические свойства клеточных пространств. Теорема о клеточной аппроксимации. Доказательство леммы о свободной точке.
курсовая работа [1,4 M], добавлен 15.06.2009Понятие нормированного пространства. Пространства суммируемых функций. Интеграл Лебега-Стилтьеса. Интерполяция в пространствах суммируемых функций. Теорема Марцинкевича и ее применение. Пространства суммируемых последовательностей.
дипломная работа [354,0 K], добавлен 08.08.2007Основные понятия и некоторые классические теоремы теории интерполяции. Определение общих свойств пространств Лоренца. Понятие нормы и спектрального радиуса неотрицательных матриц. Исследование интерполяционных признаков семейств конечномерных пространств.
курсовая работа [289,9 K], добавлен 12.01.2011