Основы теории вероятности
Изучение наиболее типичных алгоритмов решения задач, имеющих вероятностный характер. Ознакомление с элементами комбинаторики, теорией урн, формулой Байеса, способами нахождения дискретных, непрерывных случайных величин. Рассмотрение основ алгебры событий.
Рубрика | Математика |
Вид | методичка |
Язык | русский |
Дата добавления | 06.05.2010 |
Размер файла | 543,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Цель пособия
Цель создания данного пособия - на разных задачах, имеющих вероятностный характер, показать наиболее типичные алгоритмы их решения. С тем, чтобы не столько научить студента решать подобные задачи, сколько пробудить в нём интерес к теории вероятности.
На базе этого материала можно решать более сложные задачи теории вероятности.
Пособие будет полезным для самостоятельной работы студентов любых курсов специальностей: экономика, менеджмент, психология.
Раздел 1. Элементы комбинаторики
Соединения - это группы элементов некоторого конечного множества.
В элементарной алгебре рассматриваются 3 вида соединений: размещения, перестановки и сочетания [2]-[5]. Остановимся на вопросе о подсчёте числа таких комбинаций.
Размещения - упорядоченные m-элементные подмножества данного множества из n элементов (m<n), отличающиеся друг от друга порядком следования элементов или хотя бы одним элементом. Например, из 3-х цифр 7,8,9 можно составить 3 числа по одной цифре: 7, 8, 9 , - шесть чисел по 2 цифры:
Число всех возможных комбинаций из n элементов по m обозначается (arrangement(фр.) - размещение) и вычисляется по формуле:
Перестановки - упорядоченные n-элементные соединения из n элементов данного множества, отличающиеся лишь порядком элементов. Число перестановок из n элементов
(1.2)
Например,
и т.д.
Сочетания - неупорядоченные m-элементные соединения из n элементов данного множества, отличающиеся хотя бы одним элементом. Число различных сочетаний из n элементов по m обозначается символом (combinare (лат.) - соединять).
(1.3)
Например,
Используя основное свойство числа сочетаний , мы упростим вычисления
.
Кроме этого свойства числа сочетаний часто используется следующее:
.
Кроме того, принята, по определению, запись:
Задачи
Задача №1. В розыгрыше первенства страны по футболу приняло участие 16 команд. Сколькими способами могут быть распределены золотые и серебряные медали?
Решение. Золотую медаль может получить одна из 16 команд. После чего одна из 15 команд может иметь серебряную медаль. Общее число способов, которыми могут быть распределены золотая и серебряная медали, равно (правило произведения).
Задача №2. В кафе предлагают 5 первых блюд, 6 вторых и 4 третьих. Сколькими способами можно составить обед?
Решение. Согласно правилу произведения число способов равно
.
Задача №3. В классе изучают 10 предметов. В понедельник 6 уроков (все уроки разные). Сколькими способами можно составить расписание на понедельник?
Решение. Здесь нужно воспользоваться формулой размещения из 10 элементов по 6:
.
Задача №4. Сколькими способами можно разделить 6 шоколадок 14 лицам? (1 место - 1 плитка).
Решение.
1.Все плитки различны. Число способов равно числу размещений из 14 по 6:
.
2.Все плитки одинаковы. Число способов равно числу сочетаний из 14 по 6:
Задача №5. В группе 20 мальчиков и 20 девочек. Все умеют петь, танцевать, декламировать. Сколькими способами можно составить дуэты из учащихся групп?
Решение. Число способов выбрать из 20 мальчиков певца, танцора и декламатора равно числу размещений из 20 по 3 - . Аналогично из 20 девочек: . Общее число способов выбора дуэтов певцов, танцоров и декламаторов по правилу произведения равно способов.
Задача №6. Необходимо укомплектовать экипаж космического корабля в составе: командир корабля, I его помощник, II его помощник, 2 бортинженера, 1 врач. Командующая тройка может быть отобрана из 25 готовящихся к полёту лётчиков; 2 бортинженера - из 20 специалистов, в совершенстве знающих устройство космического корабля; врач - из числа 8 медиков. Сколькими способами можно укомплектовать экипаж корабля?
Решение.
.
Задача №7. Из 30 последовательных натуральных чисел: 1, 2, 3, … 30 выбирают 3 числа так, чтобы их сумма была чётной. Сколько способов такого выбора?
Решение. Сумма трёх чисел чётная, если все они чётные или из трёх 2 нечётные и 1 чётное. Например,
2 + 4 + 6 =12 и 3 + 5 + 2 = 10.
Следовательно, число способов необходимого выбора равно сумме числа сочетаний из 15 чётных чисел по 3 и числа сочетаний из 15 нечётных чисел по 2, умноженного на число чётных, т.е. 15.
.
Задача №8. Сколькими способами можно расположить на шахматной доске 8 ладей так, чтобы они не могли взять друг друга?
Решение. Один из способов показан на рисунке, а общее число способов равно числу перестановок из восьми:
? |
||||||||
? |
||||||||
? |
||||||||
? |
||||||||
? |
||||||||
? |
||||||||
? |
||||||||
? |
рис.1
Задача №9. На тренировках занимаются 12 баскетболистов. Сколько разных стартовых пятёрок может образовать тренер?
Решение. Т.к. нас интересует только состав, то имеем:
Раздел 2. Классическое определение вероятности (теория урн)
Вероятностью Р(А) события А называется отношение числа m результатов (исходов) эксперимента, благоприятствующих появлению события А, к числу n всех равновозможных результатов эксперимента:
(2.1)
При этом .
Например, вероятность выпадения числа при одном бросании правильной монеты равна 1/2.
Задачи
Используя формулы и результаты решения задач раздела 1, решим задачи на вычисление вероятности события (по классическому определению).
Задача №10. В урне 3 синих, 8 красных и 9 белых шаров, не различимых на ощупь. Шары тщательно перемешаны. Наудачу достают 1 шар. Найти варианты событий: извлечённый шар красный (событие А), синий (событие B), белый (событие С).
Решение. Всего исходов эксперимента, состоящего в извлечении одного шара, 20=3+8+9, т.е. в формуле (2.1), n=20. Событию А благоприятствует 8 исходов, т.е. mА=8, аналогично mВ=3, mС=9.
По формуле (2.1) имеем:
Примечание. Если сложить полученные вероятности, то получим 1, т.е. Р(А) + Р(В) + Р(С) = 1, что говорит о том, что А, В и С составляют полную группу событий (см. раздел 3).
Задача №11. В расписании 3 лекции по разным предметам. Всего на курсе изучается 10 предметов. Какова вероятность того, что студент, не знакомый с расписанием, угадает его, если все варианты составления расписания на день равновозможные.
Решение. Всего комбинаций из 3-х предметов, выбранных из 10 и отличающихся друг от друга хоть одним предметом или порядком их следования, т.е. размещений из десяти элементов по три, можно получить:
.
Нам нужна только одна комбинация вероятность угадать расписание:
.
Задача №12. На 8-ми одинаковых карточках написаны 2, 4, 6, 7, 8, 11, 12, 13. Найти вероятность того, что образованная из 2-х чисел дробь сократима.
Решение. Всех исходов столько, сколько есть вариантов выбора двух карточек из 8 одинакового формата . Из них только карточек благоприятствуют событию А, т.к. только 5 чисел 2, 4, 6, 8, 12 сократимы .
.
Задача №13. Из 60 экзаменационных вопросов студент подготовил 50. Найти вероятность того, что вытянутый билет из 2 вопросов будет состоять из подготовленных вопросов.
Решение.
Задача №14. Из 30 карточек с буквами русского алфавита наудачу выбирают 4 карточки. Чему равна вероятность того, что эти 4 карточки в порядке выхода составят слово "небо"?
Решение.
15.
Задача №15. На полке расставлено наудачу 10 книг. Определить вероятность того, что 3 определённые книги окажутся рядом.
Решение.
.
Пояснение. При вычислении m три указанные книги принимаем за одну.
Задача №16. В лотерее 1000 билетов. Из них 500 выигрывают, 500 проигрывают. Куплено 2 билета. Найти вероятность того, что оба билета выиграют.
Решение. Пусть случайное событие А={2 билета выигрывают}, тогда:
Задача №17. Наудачу выбирается 5-тизначное число. Какова вероятность события:
А = {число симметрично относительно центральной цифры};
В = {число кратно 5};
С = {число состоит из нечётных цифр}.
Решение. Всего пятизначных чисел: (правило произведения).
Задача №18. В коробке 15 одинаковых изделий, 5 из них окрашены. Наугад извлекают 3 изделия. Найти вероятность того, что
a) все 3 изделия окрашены;
b) одно изделие окрашено.
Решение. Рассмотрим события:
А1 = {все 3 изделия окрашены};
А2 = {из всех 3 изделий только 1 окрашено}.
Задача №19. Среди 12-ти студентов, 7 из которых девушки, раздают 5 билетов. Найти вероятность того, что среди обладателей билетов будут 3 девушки (событие А).
Решение.
Задача №20. Из колоды карт (36 штук) наудачу извлекают 3 карты. Найти вероятность того, что среди них окажется туз.
Решение.
.
Задача №21. Из 10 изделий, из которых 3 бракованные, наудачу извлекают три изделия для контроля. Найти вероятность того, что:
a)в полученной выборке все изделия бракованные;
b)в полученной выборке 2 изделия бракованные.
Решение.
А={в полученной выборке все изделия бракованные};
B={в полученной выборке 2 изделия бракованные};
.
Задача №22. Дано пять отрезков, длины которых составляют соответственно 1, 3, 5, 7, 9. Определить вероятность того, что из взятых наудачу 3-х отрезков из данных пяти можно построить треугольник (событие А).
Решение. Всего отобрать 3 отрезка из заданных 5-ти можно вариантами, т.е. ; благоприятных (ab>c или a-b<c) только 3: (3,5,7), (3,7,9), (5,7,9)
.
Задача №23. Кандидаты в студенческий совет: 3 - от I-го курса, 5 - от II-го, 7 - от III-го. Выбираются наудачу 5 человек на конференцию. Найти вероятность того, что делегация будет состоять из 1-го первокурсника, 2-х второкурсников, 2-х третьекурсников.
Решение. Пусть А = {делегация состоит из 1-го первокурсника, 2-х второкурсников, 2-х третьекурсников}.
Тогда:
Задача №24. Наугад выбирают 6 клеток из 49 (спортлото). Найти вероятность того, что будет правильно угадано 3 клетки (событие А), 6 клеток (событие В).
Решение.
Раздел 3. Алгебра событий
Исходя из определения суммы и произведения событий, совместных и несовместных событий, зависимых и независимых событий, основных теорем алгебры событий [1],[2] запишем основные формулы, связанные с ними.
Пусть рассматриваются события А и В, которые могут произойти в данном эксперименте с вероятностью Р(А) и Р(В) соответственно.
Если эти события несовместны, то имеет место формула:
Р(А+В)=Р(А)+Р(В). (3.1)
Если события А и В совместные, то:
Р(А+В)=Р(А)+Р(В)-Р(АВ). (3.2)
Если события А и В независимые, то:
, (3.3)
в противном случае
(3.4)
Здесь Р(В/А) и Р(А/В) - условные вероятности.
Задачи
Задача №25. Вероятность попадания стрелком в I-ю область мишени равна 0,45, во II-ю - 0,35, в III-ю - 0,15. Найти вероятность того, что при одном выстреле стрелок попадёт в I-ю или во II-ю область мишени (рис.2).
Рис.2
Решение. Пусть:
А1 ={попадание в I-ю область},
А2 ={попадание во II-ю область}.
События А1 и А2 несовместны при одном выстреле. Поэтому
Задача №26. Из 10 тыс. лотерейных билетов:
10 - по 200 грн., 100 - по 100 грн.,
500 - по 25 грн., 1000 - по 5 грн. выигрыша.
Найти вероятность того, что купленный билет будет содержать выигрыш не менее 25 грн.
Решение. Пусть события:
А = {выигрыш в случайно купленном билете не менее 25 грн.};
А1 ={выигрыш составил 25 грн.};
А2 ={выигрыш составил 100 грн.};
А3 ={выигрыш составил 200 грн.};
Тогда вероятность выигрыша 25 грн.
.
Аналогично,
Очевидно, что событие А представляет собой сумму событий А1, А2, А3, несовместных между собой, поэтому:
Р(А) = Р(А1) + Р(А2) + Р(А3) = 0,061.
Задача №27. В первом ящике 2 белых и 10 чёрных шаров. Во втором ящике 8 белых и 4 чёрных шара. Из каждого вынули по шару. Найти вероятность того, что оба шара белые.
Решение. Пусть:
А={белый шар из 1го ящика};
В={белый шар из 2го ящика}.
Тогда:
События A и В независимы
.
Задача №28. Три стрелка стреляют по цели. Вероятность попадания для 1-го стрелка (событие А) равна 0,75, для 2-го (событие В) - 0,8, для 3-го (событие С) - 0,9. Определить вероятность того, что все три стрелка одновременно попадут в цель (событие D).
Решение. События A, B, C - независимы
Задача №29. В условиях задачи №28 найти вероятность того, что в цель попадёт хотя бы один стрелок (событие R).
Решение. Найдём вероятность того, что в цель не попадёт ни один стрелок (событие ).
Т.к. - событие, противоположенное событию R, оно равно
Задача №30. Найти вероятность попадания стрелком в цель при одном выстреле (событие В), если вероятность события
А={хотя бы одно попадание в цель при 4-х выстрелах}=0,9984
Решение
=0,9984,
= {ни одного попадания в цель при 4-х выстрелах}
Вероятность непопадания при одном выстреле равна:
Окончательно получаем:
=
Задача №31. Студент обходит 3 библиотеки. Вероятность того, что книга есть в каждой из 3-х библиотек равна р1, вероятность того, что имеющаяся книга не выдана, равна р2. Какова вероятность того, что студент достанет книгу хотя бы в одной из библиотек.
Решение.
А1 = {достанет книгу в 1-ой библиотеке};
А2 = {достанет книгу во 2-ой библиотеке};
А3 = {достанет книгу в 3-й библиотеке};
В1 = {книга есть};
В2 = {книга не выдана};
= {не достанет ни в одной библиотеке}.
- вероятность того, что студент достанет книгу хотя бы в одной библиотеке.
Задача №32. Охотник выстрелил 3 раза по удалённой цели. Вероятность попадания в цель в начале стрельбы равна 0,8. Вероятность попадания в цель после каждого выстрела уменьшается на 0,1. Найти вероятность попадания в цель 2 раза (событие D).
Решение. Пусть
A= {попадание в цель при 1-ом выстреле};
B= {попадание в цель при 2-ом выстреле};
C={попадание в цель при 3-ем выстреле}.
Тогда
P {A} = 0,8; P {B} = 0,7; P {С} = 0,6.
.
Задача №33. Вероятность того, что первый из 3-х человек придет, равна 0,8. Вероятность того, что второй придет, равна 0,4. Вероятность того, что придёт третий, равна 0,7. Найти вероятность того, что встреча состоится, если для этого нужно, чтобы пришли хотя бы двое из трёх.
Решение. Пусть
A={придёт первый};
B={придёт второй};
C={придёт третий};
D={придут хотя бы двое из трёх}.
Тогда:
Ответ: 0,488.
Задача №34. В зависимости от наличия сырья предприятие может отправить заказчикам в сутки определённое количество продукции от 1 до 100 ед. Найти вероятность того, что полученное количество продукции можно распределить без остатка:
a) 3-м заказчикам (событие А);
b) 4-м заказчикам (событие В);
c) 12-ти заказчикам (событие С);
d) 3-м или 4-м заказчикам (событие D).
Решение.
C=AB, D=AB.
События А и В совместные
Задача №35. Рабочий обслуживает 2 станка. В течение 8-ми часов каждый из станков приостанавливается по разным причинам. Получасовые остановки равновероятны. Найти вероятность того, что в данный момент времени только 1 станок работает. Найти вероятность того, что работают оба станка.
Решение.
С={в данный момент работает только один станок};
D={в данный момент работают оба станка};
A1={работает первый станок};
A2={работает второй станок}.
Задача №36. В читальном зале 6 учебников по теории вероятностей (т.в.). Из них 3 - в переплете. Библиотекарь наудачу взял 2 учебника. Найти вероятность того, что оба учебника в переплете.
Решение. Пусть события:
A = {I-ый учебник в переплете}
B={II-ой учебник в переплете}
С={оба учебника в переплете}.
Тогда:
Иначе:
Задача №37. В ящике детали 3-х сортов: 5 - I-го сорта, 4 - II-го, 3 - III-го. Из ящика наудачу извлекается 1 деталь и не возвращается в ящик. Найти вероятность того, что при первом испытании появится деталь I-го сорта (событие А), при втором испытании - II-го сорта (событие В), при третьем - третьего сорта (событие С).
Решение.
(всего деталей 12)
Задача №38. Вероятность попадания в 1-ю мишень (событие А) для данного стрелка равно 2/3. Если стрелок попал в первый раз, то он получает право на второй выстрел по другой мишени. Вероятность поражения обеих мишеней при 2-х выстрелах равна 0,5. Найти вероятность поражения второй мишени.
Решение. Пусть:
А={поражение 1-й мишени};
В={поражение 2-й мишени};
С={поражение обеих мишеней}.
, но т.к. А и В - события зависимые, то:
По условию,
Задача №39. 4% всей продукции - брак. 75% небракованных изделий удовлетворяют требованиям первого сорта. Найти вероятность того, что выбранное изделие первого сорта.
Решение.
Пусть:
A={изделие первого сорта};
В={изделие небракованное};
Тогда:
Задача №40. Абонент набирает наугад последнюю цифру телефона. Определите вероятность того, что:
a) В1 ={придется звонить не более 3-x раз};
b) В2 ={то же, но при условии, что неизвестная цифра нечётная}.
Решение. А1 ={в 1 раз набрал нужную цифру};
А2 ={во 2-й раз набрал нужную цифру};
А3 ={в 3-й раз набрал нужную цифру}.
Вероятность того, что за 3 раза он не набрал нужную цифру, равна:
Вероятность того, что в течение этих 3-х раз набрал хотя бы один раз нужную цифру, равна:
При условии, что набираемая цифра нечётная, имеем:
Задача №41. В лотерее имеются 10 билетов, из них 5 билетов стоимостью по 1 грн, 3 билета - по 3 грн, 2 билета - по 5 грн. Наудачу берут 3 билета. Найти вероятность того, что хотя бы 2 из этих билетов имеют одинаковую стоимость.
Решение. Всего способов выбрать 3 билета из 10-ти
.
Обозначим A={все 3 билета разные}.
Тогда:
Событие {хотя бы 2 билета одинаковой стоимости} является противоположным событию А, поэтому:
Задача №42. Спортсмены на соревнованиях делают 1 упражнение с 3-х попыток. Вероятность успешного выполнения 1-й попытки равна 0,8. Вероятность успешного выполнения 2-й попытки равна 0,7. Вероятность успешного выполнения 3-й попытки равна 0,4. Найти вероятность того, что спортсмен успешно выполнить это упражнение (событие А).
Решение.
А1 = {успех в 1-й попытке};
А2 = {успех во 2-й попытке};
А3 = {успех в 3-й попытке}.
Иначе:
Задача №43. 68% мужчин, достигших 60-летия, достигают и 70-летия. Найти вероятность того, что 60-летний мужчина не достигнет своего 70-летия.
Решение. Пусть: событие А={60-летний мужчина достигнет своего 70- летия}, тогда: {60-летний мужчина не достигнет своего 70-летия}.
Р()Р(А)= =0,32.
Задача №44. В лотерее n билетов, из которых m - выигрышные. Вы приобрели k билетов. Найти вероятность того, что:
а) среди k билетов ровно l выигрышные (событие А);
б) среди k билетов хотя бы 1 выигрышный (событие В).
Решение.
а)
б) {среди k билетов ни одного выигрышного}
вероятность того, что среди k билетов хотя бы один выигрышный, равна:
Задача №45. В некотором обществе 70% людей - курят, 40% - с больными лёгкими, 25% - и курят, и болеют. Найти вероятность того, что наудачу взятый человек из этого общества:
a) не курит, но с больными лёгкими;
b) курит, но не болеет;
c) не курит и не болеет;
d) курит и болеет;
e) или курит, или болеет.
Решение.
Пусть А={человек курит};
В={человек с больными лёгкими}.
Тогда:
P(A)=0,7; P(B)=0,4; P(=0,25.
Имеем:
а)
b)
c)
d)
e)
Задача №46 (о легкомысленном члене жюри).
В жюри из 3-х человек 2 члена независимо друг от друга принимают правильное решение с вероятностью р, а третий для вынесения решения бросает монету. Окончательное решение выносится большинством голосов.
Жюри из одного человека выносит справедливое решение с вероятностью р. Какое из этих жюри вынесет справедливое решение с большей вероятностью?
Решение. Пусть оба (из 3-х) членов жюри сходятся во мнениях, тогда вероятность справедливого решения равна . При этом результат голосования 3-го жюри несущественен. Если судьи расходятся во мнениях, то вероятность справедливого решения 2-х судей - . Полная вероятность вынесения справедливого решения жюри из 3х членов равна:
2р(1-р)р2 р-р2 р.
Вывод: Оба типа жюри имеют одинаковую вероятность вынести справедливое решение.
Раздел 4. Основные теоремы теории вероятности
4.1 Формула полной вероятности
Группа гипотез - полная группа несовместных событий (пусть это будет Н1, Н2 , …, Нn). Пусть событие А может наступить лишь при появлении одного из них. Тогда вероятность события А вычисляется по формуле:
(4.1)
которая называется формулой полной вероятности.
Здесь: - вероятности гипотез;
-условные вероятности события А.
Задачи
Задача №47. В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятность выполнения квалификационной нормы равна: для лыжников - 0,9, для велосипедистов - 0,8, для бегунов - 0,75.
Найти вероятность того, что спортсмен, вызванный наудачу, выполнит норму.
Решение.
А = {спортсмен выполнил норму};
Н1 = {выполнил лыжник};
Н2 = {выполнил велосипедист};
Н3 = {выполнил бегун}.
Задача №48. Стрельба производилась по 3-м мишеням. По 1-ой - 5 раз, по 2-ой - 3 раза, по 3-ей - 2 раза. Вероятность попадания по 1-ой мишени равна 0,4, по 2-ой мишени - 0,1, по 3-ей - 0,12. Найти вероятность одного попадания в мишень.
Решение. Пусть A = {попадание в мишень при одном выстреле}
H1 = {стреляли в 1-ю мишень} P(H1) = 0,5
H2 = {стреляли в 2-ю мишень} P(H2) = 0,3
H3 = {стреляли в 3-ю мишень} P(H3) = 0,2
P(A/H1) = 0,4 P(A/H2) = 0,1P(A/H3) = 0,12
По формуле (4.1) имеем: .
Задача №49. В лаборатории 3 одинаковых клетки. В 1-й - 3 белых и 7 коричневых мыши, во 2-й - 5 белых и 6 коричневых. В 3-й - 7 белых и 2 коричневых. Случайным образом берут из одной клетки мышь. Найти вероятность того, что выбрана белая мышь (событие А).
Решение. Пусть имеется 3 гипотезы:
Н1 = {выбрана мышь из 1-й клетки};
Н2 = {выбрана мышь из 2-й клетки};
Н3 = {выбрана мышь из 3-й клетки};
Р(Н1)= Р(Н2)= Р(Н3)=1/3
Условные вероятности события А будут равны:
Р(А/Н1)= 3/10; Р(А/Н2)=5/11; Р(А/Н3)=7/9.
По формуле (4.1) имеем:
Задача №50. Судостроительный завод получает от 3-х предприятий детали: от предприятия В - 60%, от С - 30%, от D - 10%. При этом на каждом из этих предприятий допускается брак, соответственно на В - 4%, на С - 5%, и на D - 6%. Какова вероятность того, что случайно выбранная деталь будет бракованной (событие А), если известно, от какого предприятия она поступила.
Решение. В качестве гипотез событий примем:
Н1 = {деталь поступила от предприятия В};
Н2 = {деталь поступила от предприятия С};
Н3 = {деталь поступила от предприятия D}.
Р(Н1) = 0,6; Р(Н2) = 0,3; Р(Н3) = 0,1
Условные вероятности события А равны соответственно:
Р(А/Н1)= 0,04;Р(А/Н2)=0,05;Р(А/Н3)=0,06.
По формуле (4.1) имеем:
Задача №51. В магазин поступили телевизоры от 5-ти фирм в следующем количестве:
Фирма |
1 |
2 |
3 |
4 |
5 |
|
Количество телевизоров |
5 |
10 |
6 |
8 |
11 |
|
Рi |
0,98 |
0,8 |
0,6 |
0,3 |
0,1 |
Рi - вероятности того, что телевизоры исправны.
Найти вероятности того, что купленный наугад телевизор исправно работает (событие А)
Решение.
1) В качестве гипотез выберем события:
{телевизор i-й фирмы}, (i=).
2) Найдём вероятности гипотез, учитывая, что п=40:
Р(Н1) = 5/40; Р(Н2) = 10/40; Р(Н3) = 6/40; Р(Н4) = 8/40; Р(Н5) = 11/40.
3) Условные вероятности равны:
Р(А/Н1) = 0,98; Р(А/Н2) = 0,8; Р(А/Н3) = 0,6; Р(А/Н4) = 0,3; Р(А/Н5) = 0,1.
4) По формуле (4.1) имеем:
Задача №52. Имеются 3 одинаковых ящика, в каждом из которых по 20 однотипных деталей. Определить вероятность того, что извлечённая из наугад выбранного ящика деталь стандартная (событие А), если известно, что в 1-м ящике 18 стандартных деталей, во 2-м - 17, в 3-м - 16.
Решение. Если в качестве i-й гипотезы (i = 1,2,3) выбрать событие
Нi = {деталь из i-го ящика}, то Р(Нi) =1/3.
Р(А/Н1) = 18/20;
Р(А/Н2) = 17/20;
Р(А/Н3) = 16/20.
По формуле (4.1) имеем:
4.2 Формула Байеса (формула переоценки вероятности гипотез)
Пусть событие А может наступить лишь при условии появления одной из гипотез (см п.4.1). Если событие А уже произошло, то вероятности гипотез могут быть переоценены по формуле Байеса:
(4.2)
Задачи
Задача №53. 70% населения обследуемого региона имеет только среднее образование, среди которых 10% безработных, 30% населения - с высшим образованием, среди них 2% безработных. Если выбранный наугад человек является безработным, то какова вероятность того, что он закончил ВУЗ?
Решение. В качестве гипотезы примем:
Н1 = {выбранный наугад человек со средним образованием};
Н2 = { выбранный наугад человек со высшим образованием }.
Р(Н1) = 0,7; Р(Н2) = 0,3.
Пусть соб. А = {выбранный наудачу человек безработный}, тогда
P(A/H1) = 0,1, P(A/H2) = 0,02.
Нужно определить P( ) по формуле (4.2).
Имеем:
Задача №54. На сборочный конвейер поступили детали с 3-х станков, производительность которых неодинакова: I-го - 50% плана, II-го - 30% плана, III-го - 20% плана. Вероятность получения годного узла равна 0,92, если деталь I-го станка, 0,95,если деталь со II-го станка, 0,82, если деталь с III-го станка. Определить вероятность того, что в сборку попали детали, изготовленные на первом станке, если узел годный.
Решение. А = { узел годный};
Н1 = {деталь с I-го станка};
Н2 = {деталь со II-го станка};
Н3 = {деталь с III-го станка};
Р(Н1)=0,5; Р(Н2)=0,3; Р(Н3)=0,2.
Р(А/Н1)=0,92; Р(А/Н2)=0,95; Р(А/Н3)=0,82.
Задача №55. 30% приборов собирают специалисты высокой квалификации, 70% - средней квалификации. Надёжность работы прибора, собранного специалистом высокой квалификации - 0,9, а специалистом средней квалификации - 0,8. Взятый наугад прибор оказался надёжным. Определить вероятность того, что прибор собран специалистом высокой квалификации.
Решение.
Пусть событие А = {прибор работает безотказно}.
До проверки прибора возможны 2 гипотезы:
Н1 = {прибор собран специалистом высокой квалификации};
Н2 = { прибор собран специалистом средней квалификации }.
Р(Н1) = 0,3, Р(Н2) = 0,7.
Условные вероятности события А равны:
P(A/H1) = 0,9, P(A/H2) = 0,8.
Пусть событие А произошло, тогда
.
Задача №56. Из 10 учащихся, которые пришли на экзамен по математике (нужно было подготовить 20 вопросов), трое подготовились на отлично (выучив по 20 вопросов), четверо - на хорошо, выучив по 16 вопросов, двое - на удовлетворительно, выучив по 10 вопросов, один не готовился и может ответить на 5 вопросов из 20. В билете 3 вопроса. Первый ученик ответил на все 3 вопроса своего билета. Какова вероятность того, что этот ученик подготовился на отлично?
Решение. Пусть событие А = {1-й ученик ответил на 3 вопроса} и гипотезы:
Н1 = {1-й ученик подготовлен на 5};
Н2 = {1-й ученик подготовлен на 4};
Н3 = {1-й ученик подготовлен на 3};
Н4 = {1-й ученик подготовлен на 2}.
P(H1) = 0,3; P(H2) = 0,4; P(H3) = 0,2; P(H4) = 0,1
P(А/H1) = 1 (событие {1-й ученик ответил на 3 вопроса, при условии, что он выучил 20 из 20}, является достоверным).
(вероятность правильного ответа на 1-й вопрос равна 16/20, на 2-й - 15/19, на 3-й - 14/18).
По формуле (4.2) имеем:
Вывод: учителю придётся предложить ученику ещё дополнительные вопросы.
Раздел 5. Случайные величины (с.в.)
5.1 Дискретные случайные величины
Дискретной случайной величиной называют случайную величину, возможные значения которой есть изолированные числа (число их может быть конечным или бесконечным для счетного множества).
Зависимость вероятностей от возможных значений с.в. есть закон распределения дискретной с.в., который может быть представлен в виде ряда распределения, многоугольника распределения, функции распределения с.в.
При этом название закона распределения диктует формула, по которой вычисляются вероятности, соответствующие возможным значениям С.В. Ниже приведены наиболее часто встречающиеся на практике:
§ биномиальный закон распределения дискретной с.в. X - числа появлений события в n независимых испытаниях, в каждом из которых вероятность появления события равна p. Вероятность возможного значения Х= k по формуле Бернулли равна:
(5.1)
§ если n велико, а p в каждом испытании очень мало, то используется приближённая формула (распределение Пуассона):
, np (5.2)
Здесь
.
§ если вероятность появления события А в каждом испытании p (), а Х - число испытаний до появления события А в серии независимых повторных испытаний, то пользуются формулой:
(5.3)
Ряд вероятностей этого распределения будет бесконечной геометрической прогрессией со знаменателем q<1 и суммой, равной единице. Такое распределение называется геометрическим;
§ в задачах статистического контроля качества часто используется гипергеометрический закон распределения дискретной с.в. При этом применяется формула:
(5.4)
Здесь из совокупности n элементов, которая содержит m элементов определённого свойства (напр., среди n деталей ровно m бракованных), отбираются случайным образом k элементов. P(X=l) - это вероятность того, что среди k отобранных элементов ровно l элементов с определённым свойством.
§ Кроме указанных законов распределения, на практике используются числовые характеристики с.в.:
- математическое ожидание M(X);
- дисперсия D(X);
- среднее квадратическое отклонение X).
(5.5)
(5.6)
(5.7)
(5.8)
Для биномиального распределения (формула (5.1)) имеем:
M(X)=np (5.9)
D(X)=npq (5.10)
Для распределения Пуассона (формула (5.2)):
M(Х)=D(Х)=np= (5.11)
Задачи
Задача №57. В партии из 6-ти деталей 4 стандартных. Наудачу отобраны три детали. Составить закон распределения дискретной с.в. Х - числа стандартных деталей среди отобранных. Найти числовые характеристики с.в. Х.
Решение. Имеем гипергеометрический закон распределения с.в. Х:
Возможные значения Х:
Соответствующие вероятности вычисляются по формуле (5.4):
=
Имеем ряд распределения:
Х: |
0 |
1 |
2 |
3 |
||
0 |
Многоугольник распределения.
рис.3
Функцией распределения F(х) называется вероятность того, что с.в. Х в результате испытаний примет значение, меньшее х: F(x)=P(X<x)
В нашем случае имеем:
если х1, то F(x)=0,
если 1<x2, то F(x)=,
если 2<x3, то F(x)=
если х>3, то F(x)=.
График этой функции на рис.4.
рис.4
Математическое ожидание (по формуле (5.5)):
Дисперсия (по формуле (5.7)):
Среднее квадратическое отклонение (по формуле (5.8 )):
Задача №58. В денежной лотерее 100 билетов, из них 1 составляет выигрыш в 50 грн, 10 - в 1 грн. Составить закон распределения с.в. Х - стоимости возможного выигрыша для владельца одного лотерейного билета.
Решение. Вероятность выигрыша 1 грн равна
,
аналогично получим
, .
Имеем ряд распределения с.в. Х:
0 |
1 |
50 |
||
0,89 |
0,1 |
0,01 |
Многоугольник распределения с.в. Х:
рис.5
Функция распределения.
рис.6
Задача №59. Среди 20-ти изделий 5 бракованных. Случайным образом выбираются 3 изделия для проверки их качества. С.в. Х - число бракованных изделий. Построить ряд распределения Х, найти М(Х), D(X), если Х=0,1,2,3.
Решение.
Имеем ряд распределения с.в. Х.
0 |
1 |
2 |
3 |
||
Х:
Задача №60. Вероятность того, что расход воды на некотором предприятии окажется нормальным (не более определённого числа литров в сутки), равна . Найти вероятности того, что в ближайшие 6 дней расход воды будет нормальным в течение 1-го, 2-х, 3-х, 4-х, 5-ти, 6-ти дней.
Решение. Пусть с.в. Х - число дней, в течение которых расход воды будет нормальным. Тогда вероятности, соответствующие возможным значениям Х (от 1 до 6), будут вычисляться по формуле Бернулли (5.1) и распределение с.в. Х будет биномиальным.
Примечание: при вычислениях вероятностей удобно использовать формулу
Строим ряд распределения с.в. Х.
Х |
1 |
2 |
3 |
4 |
5 |
6 |
||
0,004 |
0,033 |
0,132 |
0,297 |
0,356 |
0,178 |
Строим многоугольник распределения с.в.Х.
рис.7
Очевидно, что наиболее вероятен перерасход воды в течение одного или двух дней из 6-ти.
Наиболее вероятным является нормальный расход воды в течение 5-ти дней:
Р(Х=5)=0,356.
называется модой () с.в. Х.
Строим функцию F(x) распределения с.в. Х.
рис.8
Функция распределения аналитически может быть записана так:
F(x)
Задача №61. Игральная кость брошена три раза. Построить ряд и функцию распределения с.в. Х - возможного числа появления шестёрок.
Решение. Имеем схему Бернулли с
, , n=3.
; .
Ряд распределения Х имеет вид:
0 |
1 |
2 |
3 |
||
Функция F(х) распределения с.в. Х имеет вид:
F(х)=
Строим график:
рис.9
Задача №62. Подлежат исследованию 1200 проб руды. Вероятность промышленного содержания металла в каждой пробе равна р=0,09. Найти математическое ожидание и дисперсию числа проб с промышленным содержанием металла.
Решение. Пусть с.в. Х - число проб с промышленным содержанием металла, тогда c.в. Х распределена по биномиальному закону.
Математическое ожидание вычисляем по формуле (5.9), дисперсию, соответственно, по формуле (5.10 ):
.
Задача №63. Тираж учебников составляет экземпляров. Вероятность неверного брошюрования учебника равна Записать ряд бракованных учебников среди данного тиража для возможных значений Х от 1 до 5.
Решение. Здесь
По формуле (5.2) мы получим все интересующие нас вероятности:
Имеем ряд распределения с.в. Х (закон Пуассона).
1 |
2 |
3 |
4 |
5 |
6 |
||
Так, (принимаем ).
Математическое ожидание числа бракованных экземпляров среди 10 книг при равно:
Задача №64. Вероятность того, что с конвейера сойдёт k бракованных деталей равна . Построить ряд распределения для с.в. k и найти её математическое ожидание.
Замечание. для решения этой задачи понадобятся первоначальные сведения из теории рядов, или, по крайней мере, знание бесконечной убывающей прогрессии.
Решение.
1. Строим ряд распределения с.в. k - числа бракованных деталей с конвейера (геометрический закон).
K: |
1 |
2 |
3 |
4 |
… |
n |
… |
||
0,3 |
… |
… |
2.
Мы получим М(Х), если бесконечная сумма - ряд сходится.
Воспользуемся признаком Даламбера для знакоположительных рядов.
ряд сходится и М(Х) - его сумма.
Для её нахождения применим искусственный приём:
+ . . .
Примечание. Каждая бесконечная сумма в скобках в правой части равенства для М(Х) вычисляется по формуле для суммы бесконечной убывающей геометрической прогрессии ().
Задача №65. Мишень вращается вокруг оси Ох. При достаточно большой угловой скорости вращения стрелок не в состоянии различить цифры. Стреляет наугад. Секторы одинаковы. Выигрыш соответствует номеру сектора.
Стоит ли ему участвовать в такой игре, если за право стрелять один раз надо платить 5 грн?
Решение.
рис.10
Х: |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
||
Вероятности всех возможных значений Х равны между собой и равны
Найдём
.
Стоимость выстрела 5 грн. Очевидно, стрелять много раз невыгодно.
Задача №66. Дискретная с.в. Х принимает только 3 возможных значения: 1,
, . ().
Найти закон распределения с.в. Х, если
М(Х)=2,2 и D(X)=0,76.
Решение.
1. Запишем ряд распределения для Х, найдя предварительно
2.
Х: |
1 |
||||
0,3 |
0,2 |
0,5 |
2. Запишем равенства для математического ожидания М(Х) и дисперсии D(X):
Получим нелинейную систему двух уравнений с двумя неизвестными и . Решим её.
Х: |
1 |
2 |
3 |
||
0,3 |
0,2 |
0,5 |
5.2 Непрерывные случайные величины
Непрерывной случайной величиной называют величину, которая может принимать любое числовое значение из некоторого конечного (a,b) или бесконечного интервала.
Множество возможных значений такой величины бесконечно.
Примером таких величин являются: величина ошибки при измерении расстояний, веса и др.; время бессбойной работы прибора, размеры детали, рост человека при обследовании определённой группы людей и др.
Закон распределения непрерывной с.в. имеет две формы:
интегральная функция распределения F(x) и дифференциальная функция распределения f(x).
§ Как и в случае с дискретной с.в., интегральная функция распределения F(x) имеет вид:
F(x)=P(X<x) (5.12)
Но в отличие от ступенчатой линии для F(x) в случае с дискретной с.в. для непрерывной с.в. имеем непрерывную кривую для F(x).
Свойства F(x):
1) 0F(x)1;
2) если >, то F()F();
3) P(a<X<b)=F(b)-F(a); (5.13)
4) P(X=)=0;
5) если Х (a,b), то ;
6) .
§ Дифференциальная функция распределения f(x) (плотность вероятности) есть производная от интегральной функции:
f(x)=
P(a<x<b)= (5.14)
(f(x)dx называется элементом вероятности)
F(x)= (5.15)
Свойства f(x):
1) f(x);
2) (5.16)
3) (
Наиболее употребимыми являются следующие законы распределения непрерывной с.в. (задаются они формулой для f(x)):
§ равномерное распределение вероятностей
Пусть [a,b] - шкала некоторого прибора. Вероятность p попадания указателя в некоторый отрезок шкалы [,] равна p=k(-), (k>0).
Тогда, так как
p(a<x<b)=1, то k(b-a)=1 k=
p(<x<)= F(x)=p(a<X<x)= (5.17)
График F(x) на рисунке 11.
рис.11
f (x)= (5.18)
рис.12
§ показательное распределение
(5.19)
F(x)= (5.20)
§ нормальное распределение
(5.21)
F(x)= (5.22)
Здесь a=M(x), - параметры распределения с.в.Х.
График f(x) представлен на рис.13 и называется нормальной кривой (кривой Гаусса).
рис.13
При a=0, имеем плотность нормированного распределения:
Эта функция табулирована (см. приложение 1), график её на рис.14.
рис.14
В этом случае интегральная функция распределения с.в.Х есть функция Лапласа:
(5.23)
График функции Лапласа Ф(х) на рис.15.
рис.15
Из него видно, что:
1) Ф(0)=0,
2) Ф(-х)=-Ф(х),
3)
Вероятность того, что Х примет значение, принадлежащее интервалу (c,d), находим по формуле:
(5.24)
Вероятность того, что абсолютная величина отклонения меньше положительного числа, равна:
, (5.25)
()
При а=0 справедливо равенство:
(5.25а)
§ Числовые характеристики непрерывной с.в.:
- математическое ожидание M(X)
(5.26)
(5.27)
- дисперсия D(X)
(5.28)
(5.29)
Эти равенства можно заменить равносильными равенствами:
(5.30)
(5.31)
- среднее квадратическое отклонение
(5.32)
При этом для равномерного распределения:
(5.33)
(5.34)
(5.35)
Для показательного распределения
:
(5.36); (5.37); (5.38).
Для нормального распределения:
M(X)=a (5.39); (5.40); (5.41).
Задачи
Задача №67. Автобусы некоторого маршрута идут строго по расписанию. Интервал движения 5 мин. Найти вероятность того, что пассажир, подошедший к остановке, будет ждать очередной автобус менее 3-х минут.
Решение. Пусть с.в. Т -время ожидания очередного автобуса - непрерывная случайная величина. Она распределена по равномерному закону с плотностью:
(см. формулу (5.18) )
В нашем случае
0<t<5
По формуле (5.14) имеем:
Искомая вероятность
p=0,6.
Задача №68. Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округлены до ближайшего целого деления. Найти вероятность того, что при отсчёте будет сделана ошибка, не превышающая 0,04 (событие А).
Решение. Ошибку округления отсчёта можно рассматривать как с.в. Х, которая распределена равномерно в интервале между 2-мя соседними целыми делениями с плотностью
,
Ошибка отсчёта не превысит 0,04, если она будет заключена в (0; 0,04) или в(0,16;0,2). По формуле (5.14) имеем:
Искомая вероятность
р=0,4.
Задача №69. Найти математическое ожидание, дисперсию и среднее квадратичское отклонение с.в. Х, распределённой равномерно в интервале (2,8).
Решение. По формулам (5.32)-(5.34) получим:
.
Задача №70. Непрерывная с.в. Х распределена по показательному закону, заданному при дифференциальной функцией ; при х<0 Найти вероятность того, что в результате испытания Х попадёт в интервал (0,3; 1).
Решение. Исходя из формулы (5.19),
Пользуясь формулой (5.14), получим:
.
Искомая вероятность приближённо равна 0,414.
Задача №71. Непрерывная с.в. Х распределена по показательному закону
.
Найти числовые характеристики с.в. Х и вероятность того, что в результате испытания Х попадёт в интервал (2,5).
Решение.
1) Из формул (5.36)-(5.38) получим:
2) Из формулы (5.14) следует, что:
.
Задача №72. Задана плотность распределения количества прибыли Х:
Найти коэффициент a и вероятность получения величины прибыли Х из отрезка [0,5; 1] млн.гр
Решение.
1) В соответствии с определением модуля х:
- имеем:
3) Используя формулу (5.16) и свойство аддитивности несобственного интеграла, получаем:
рис.16
.
4) Используя формулу (5.14), получим:
Примечание. Подынтегральная функция , т.к. отрезок [0,5; 1] принадлежит положительной части оси Ох.
Ответ:
Задача №73. Математическое ожидание и среднее квадратическое отклонение нормального распределения случайной величины Х соответственно равны 20 и 5. Найти вероятность того, что в результате испытания Х примет значение, заключённое в интервале (15,25).
Решение. Воспользуемся формулой (5.24). Подставив
c=15, d=25, a=20, ,
получим:
По таблице (приложение 2) находим Ф(1)=0,3413
Ответ:
Задача №74. Контролируется длина Х выпускаемой детали, которая распределена нормально с математическим ожиданием (проектная длина), равным 50 мм. Фактическая длина детали не менее 32 мм и не более 68 мм.
Найти вероятность того, что длина наудачу взятой детали:
а) больше 55 мм;
б) меньше 40 мм.
Решение.
1) Событие является достоверным
С другой стороны, по формуле (5.24):
Приравниваем правые части равенств для
=1
Теперь имеем: математическое ожидание с.в. Х а=50, среднее квадратическое отклонение
2) Найдём
0,0823.
3)
Задача №75. В каких пределах должна изменяться случайная величина, подчиняющаяся нормальному закону распределения, чтобы выполнялось равенство: ?
Решение. Согласно формуле (5.25) имеем:
Из таблицы Ф(х) (приложение 2) находим:
Мы получили "правило 3-х сигм": вероятность того, что абсолютная величина отклонения нормально распределённой случайной величины будет меньше утроенного среднего квадратического отклонения, равна 0,9973.
Ответ: (а-3, а+3).
Задача№76. Станок автомат изготавливает детали, длина которых по стандарту может отклоняться от 125 мм не более, чем на 0,5 мм. Среди продукции станка 7% нестандартной.
Считая, что длины деталей имеют нормальное распределение, найти их дисперсию.
Решение. Пусть с.в. Х - длина детали, а=М(Х)=125.
Из условия:
Согласно формуле (5.24) имеем:
Так как станок даёт 7% нестандартной продукции, то:
Искомая дисперсия
D(X)=
Задача №77 ("из жизни хищников").
Для некоторого хищника вероятность удачной охоты равна 0,4 при каждом столкновении с жертвой.
Найти математическое ожидание с.в. Х - числа пойманных жертв при 20-ти столкновениях.
Решение. Случайная величина Х распределена по биномиальному закону при п=20, р=0,4.
Согласно формуле (5.9), имеем:
Приложение 1
Таблица значений функции
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
||
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 |
0,3989 3970 3910 3814 3683 3521 3332 3123 2897 2661 0,2420 2179 1942 1714 1497 1295 1109 0940 0790 0656 0,0540 0440 0355 0283 0224 0175 0136 0104 0079 0060 0,0044 0033 0024 0017 0012 0009 0006 0004 0003 0002 |
3989 3965 3902 3802 3668 3503 3312 3101 2874 2637 2396 2155 1919 1691 1476 1276 1092 0925 0775 0644 0529 0431 0347 0277 0219 0171 0132 0101 0077 0058 0043 0032 0023 0017 0012 0008 0006 0004 0003 0002 |
3989 3961 3894 3790 3652 3485 3292 3079 2850 2613 2371 2131 1895 1669 1456 1257 1074 0909 0761 0632 0519 0422 0339 0270 0213 0167 0129 0099 0075 0056 0042 0031 0022 0016 0012 0008 0006 0004 0003 0002 |
3988 3956 3885 3778 3637 3467 3271 3056 2827 2589 2347 2107 1872 1647 1435 1238 1057 0893 0748 0620 0508 0413 0332 0264 0208 0163 0126 0096 0073 0055 0040 0030 0022 0016 0011 0008 0005 0004 0003 0002 |
3986 3951 3876 3765 3621 3448 3251 3034 2803 2565 2323 2083 1849 1626 1415 1219 1040 0878 0734 0608 0498 0404 0325 0258 0203 0158 0122 0093 0071 0053 0039 0029 0021 0015 0011 0008 0005 0004 0003 0002 |
3984 3945 3867 3752 3605 3429 3230 3011 2780 2541 2299 2059 1826 1604 1394 1200 1023 0863 0721 0596 0488 0396 0317 0252 0198 0154 0119 0091 0069 0051 0038 0028 0020 0015 0010 0007 0005 0004 0002 0002 |
3982 3939 3857 3739 3589 3410 3209 2989 2756 2516 2275 2036 1804 1582 1374 1182 1006 0848 0707 0584 0478 0387 0310 0246 0194 0151 0116 0088 0067 0050 0037 0027 0020 0014 0010 0007 0005 0003 0002 000 |
3980 3932 3847 3726 3572 3391 3187 2966 2732 2492 2251 2012 1781 1561 1354 1163 0989 0833 0694 0573 0468 0379 0303 0241 0189 0147 0113 0086 0065 0048 0036 0026 0019 0014 0010 0007 0005 0003 0002 0002 |
3977 3925 3836 3712 3555 3372 3166 2943 2709 2468 2227 1989 1756 1539 1334 1145 0973 0818 0681 0562 0459 0371 0297 0235 0184 0143 0110 0084 0063 0047 0035 0025 0018 0013 0009 0007 0005 0003 0002 0001 |
3973 3918 3825 3697 3538 3352 3144 2920 2685 2444 2203 1965 1736 1518 1315 1127 0957 0804 0669 0551 0449 0363 0290 0229 0180 0139 0107 0081 0061 0046 0034 0025 0018 0013 0009 0006 0004 0003 0002 0001 |
Приложение 2
Таблица значений функции
х |
Ф(х) |
х |
Ф(х) |
х |
Ф(х) |
х |
Ф(х) |
х |
Ф(х) |
|
0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,14 0,15 0,16 0,17 0,18 0,19 0,20 0,21 0,22 0,23 0,24 0,25 0,26 0,27 0,28 0,29 0,30 0,31 0,32 |
0,0000 0,0040 0,0080 0,0120 0,0160 0,0199 0,0239 0,0279 0,0319 0,0359 0,0398 0,0438 0,0478 0,0517 0,0557 0,0596 0,0636 0,0675 0,0714 0,0753 0,0793 0,0832 0,0871 0,0910 0,0948 0,0987 0,1026 0,1064 0,1103 0,1141 0,1179 0,1217 0,1255 |
0,33 0,34 0,35 0,36 0,37 0,38 0,39 0,40 0,41 0,42 0,43 0,44 0,45 0,46 0,47 0,48 0,49 0,50 0,51 0,52 0,53 0,54 0,55 0,56 0,57 0,58 0,59 0,60 0,61 0,62 0,63 0,64 0,65 |
0,1293 0,1331 0,1368 0,1406 0,1443 0,1480 0,1517 0,1554 0,1591 0,1628 0,1664 0,1700 0,1736 0,1772 0,1808 0,1844 0,1879 0,1915 0,1950 0,1985 0,2019 0,2054 0,2088 0,2123 0,2157 0,2190 0,2224 0,2257 0,2291 0,2324 0,2357 0,2389 0,2422 |
0,66 0,67 0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75 0,76 0,77 0,78 0,79 0,80 0,81 0,82 0,83 0,84 0,85 0,86 0,87 0,88 0,89 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,98 |
0,2454 0,2486 0,2517 0,2549 0,2580 0,2611 0,2642 0,2673 0,2703 0,2734 0,2764 0,2794 0,2823 0,2852 0,2881 0,2910 0,2939 0,2967 0,2995 0,3023 0,3051 0,3078 0,3106 0,3133 0,3159 0,3186 0,3212 0,3238 0,3264 0,3289 0,3315 0,3340 0,3365 |
0,99 1,00 1,01 1,02 1,03 1,04 1,05 1,06 1,07 1,08 1,09 1,10 1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,18 1,19 1,20 1,21 1,22 1,23 1,24 1,25 1,26 1,27 1,28 1,29 1,30 1,31 |
0,3389 0,3413 0,3438 0,3461 0,3485 0,3508 0,3531 0,3554 0,3577 0,3599 0,3621 0,3643 0,3665 0,3686 0,3708 0,3729 0,3749 0,3770 0,3790 0,3810 0,3830 0,3849 0,3869 0,3883 0,3907 0,3925 0,3944 0,3962 0,3980 0,3997 0,4015 0,4032 0,4049 |
1,32 1,33 1,34 1,35 1,36 1,37 1,38 1,39 1,40 1,41 1,42 1,43 1,44 1,45 1,46 1,47 1,48 1,49 1,50 1,51 1,52 1,53 1,54 1,55 1,56 1,57 1,58 1,59 1,60 1,61 1,62 1,63 1,64 |
0,4066 0,4082 0,4099 0,4115 0,4131 0,4147 0,4162 0,4177 0,4192 0,4207 0,4222 0,4236 0,4251 0,4265 0,4279 0,4292 0,4306 0,4319 0,4332 0,4345 0,4357 0,4370 0,4382 0,4394 0,4406 0,4418 0,4429 0,4441 0,4452 0,4463 0,4474 0,4484 0,4495 |
х |
Ф(х) |
х |
Ф(х) |
х |
Ф(х) |
х |
Ф(х) |
х |
Ф(х) |
|
1,65 1,66 1,67 1,68 1,69 1,70 1,71 1,72 1,73 1,74 1,75 1,76 1,77 1,78 1,79 1,80 1,81 1,82 1,83 |
0,4505 0,4515 0,4525 0,4535 0,4545 0,4554 0,4564 0,4573 0,4582 0,4591 0,4599 0,4608 0,4616 0,4625 0,4633 0,4641 0,4649 0,4656 0,4664 |
1,84 1,85 1,86 1,87 1,88 1,89 1,90 1,91 1,92 1,93 1,94 1,95 1,96 1,97 1,98 1,99 2,00 2,02 2,04 |
0,4671 0,4678 0,4686 0,4693 0,4699 0,4706 0,4713 0,4719 0,4726 0,4732 0,4738 0,4744 0,4750 0,4756 0,4761 0,4767 0,4772 0,4783 0,4793 |
2,06 2,08 2,10 2,12 2,14 2,16 2,18 2,20 2,22 2,24 2,26 2,28 2,30 2,32 2,34 2,36 2,38 2,40 2,42 |
0,4803 0,4812 0,4821 0,4830 0,4838 0,4846 0,4854 0,4861 0,4868 0,4875 0,4881 0,4887 0,4893 0,4898 0,4904 0,4909 0,4913 0,4918 0,4922 |
2,44 2,46 2,48 2,50 2,52 2,54 2,56 2,58 2,60 2,62 2,64 2,66 2,68 2,70 2,72 2,74 2,76 2,78 2,80 |
0,4927 0,4931 0,4934 0,4938 0,4941 0,4945 0,4948 0,4951 0,4953 0,4956 0,4959 0,4961 0,4963 0,4965 0,4967 0,4969 0,4971 0,4973 0,4974 |
2,82 2,84 2,86 2,88 2,90 2,92 2,94 2,96 2,98 3,00 3,20 3,40 3,60 3,80 4,00 4,50 5,00 |
0,4976 0,4977 0,4979 0,4980 0,4981 0,4982 0,4984 0,4985 0,4986 0,49865 0,49931 0,49966 0,499841 0,499928 0,499968 0,499997 0,499997 |
Литература
1. Барковський В.В., Барковська Н.В., Лопатін О.К. Математика для економістів. Теорія імовірностей та математична статистика - К.: 1999 - 447с.
2. Гнеденко Б.В. Курс теории вероятности - М.: Наука - 1969 - 400с.
3. Ежов И.И., Скороход А.В., Ядренко М.И. Элементы комбінаторики - М.: Наука - 1977.
4. Жалдак М.И., Квитко А.Н. Теория вероятностей с элементами информатики. Практикум - К.: "Выща школа" - 1989.
5. Жалдак М.І. початки теорії ймовірностей - К.: Рад.шк.. - 1978 - 144с.
Подобные документы
Возможные варианты расчета вероятности событий. Выборочное пространство и события, их взаимосвязь. Общее правило сложения вероятностей. Законы распределения дискретных случайных величин, их математическое ожидание. Свойства биномиального распределения.
презентация [1,4 M], добавлен 19.07.2015Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.
шпаргалка [945,2 K], добавлен 18.06.2012Опыт со случайным исходом. Статистическая устойчивость. Понятие вероятности. Алгебра событий. Принцип двойственности для событий. Условные вероятности. Формулы сложения и умножения вероятностей. Формула Байеса. Пространство элементарных событий.
реферат [402,7 K], добавлен 03.12.2007Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.
контрольная работа [55,2 K], добавлен 19.12.2013Бесконечное число возможных значений непрерывных случайных величин. Рассмотрение непрерывной случайной величины Х с функцией распределения F(x). Кривая, изображающая плотность вероятности. Определение вероятности попадания на участок a до b через f(x).
презентация [64,0 K], добавлен 01.11.2013Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.
лекция [387,7 K], добавлен 12.12.2011Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.
контрольная работа [157,5 K], добавлен 04.02.2012Пространство элементарных событий, математическое ожидание. Функции распределения и плотности распределения составляющих системы случайных величин. Числовые характеристики системы. Условия нормировки плотности системы случайных непрерывных величин.
практическая работа [103,1 K], добавлен 15.06.2012Сходимость последовательностей случайных величин. Центральная предельная теорема для независимых одинаково распределенных случайных величин. Основные задачи математической статистики, их характеристика. Проверка гипотез по критерию однородности Смирнова.
курсовая работа [1,6 M], добавлен 13.11.2012Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.
лекция [287,5 K], добавлен 02.04.2008