Модели и методы принятия решений

Нахождение экстремумов функций методом множителей Лагранжа. Выражение расширенной целевой функции. Схема алгоритма численного решения задачи методом штрафных функций в сочетании с методом безусловной минимизации. Построение линий ограничений.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 04.05.2011
Размер файла 259,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Курсовая работа

Модели и методы принятия решений

Выполнила: Токарева О.П.

Заочная форма обучения

Курс V

Специальность 210100

№ зачетной книжки 602654

Проверил: Цыганов Ю.К.

Москва

2008

Задание

на курсовую работу по дисциплине «Модели и методы принятия решений»

Вариант 4

Задача 1.

Решить графоаналитическим методом.

min (X) = - 3x1 - 2x2

при 2x1 + x2 2

x1 + x2 3

- x1 + x2 1

X 0

Задача 2.

· Найти экстремумы методом множителей Лагранжа.

· Решение проиллюстрировать графически.

extr (X) = x12 + x22

при x12 + x22 - 9x2 + 4,25 = 0

Задача 3.

· Решить на основе условий Куна-Таккера.

· Решение проиллюстрировать графически.

extr (X) = x1x2

при 6x1 + 4x2 12

2x1 + 3x2 24

- 3x1 + 4x2 12

Задача 4.

· Получить выражение расширенной целевой функции (РЦФ) и составить блок-схему алгоритма численного решения задачи методом штрафных функций в сочетании с одним из методов безусловной минимизации.

· Решить задачу средствами MS Excel.

· Решение проиллюстрировать графически.

max (X) = 2x1 + 4x2 - x12 - 2x22

при x1 + 2x2 8

2x1 - x2 12

X 0

Задача 1

Решить графоаналитическим методом.

min (X) = - 3x1 - 2x2

при 2x1 + x2 2

x1 + x2 3

- x1 + x2 1

X 0

Решение:

Построим линии ограничений:

Примем: 2х1+х2=2 (a)

х1+х2=3 (b)

-х1+х2=1 (c)

экстремум функция минимизация алгоритм

Получаем три прямые a, b и c, которые пересекаются и образуют треугольник соответствующий области которая соответствует первым трем ограничениям, добавляя четвертое ограничение получаем четырехугольник ABCD - допустимая область значений, в которой надо искать минимум (на рисунке эта область не заштрихована).

Рис. 1

Примем целевую функцию равной нулю (красная линия d) тогда градиент имеет координаты (-3;-2). Для того, чтобы найти минимум целевой функции будем перемещать график линии d параллельно самой себе в направлении антиградиента до входа ее в область ограничений. Точка в которой область войдет в допустимую область и будет искомой точкой минимума целевой функции. Это точка В(0,33 ; 1,33). При этом целевая функция будет иметь значение:

Темно-синяя линия на рисунке (е).

Задача 2.

· Найти экстремумы методом множителей Лагранжа.

· Решение проиллюстрировать графически.

extr (X) = x12 + x22

при x12 + x22 - 9x2 + 4,25 = 0

Решение:

Составим функцию Лагранжа

h(X)=x12 + x22 - 9x2 + 4,25=0

Составим систему уравнений из частных производных и приравняем их к нулю:

Решим данную систему уравнений:

Разложим на множители 1 уравнение системы:

Предположим, что , тогда . Подставим во второе уравнение:

2x2 - 2x2 + 9 = 0

9 = 0 не верно, следовательно принимаем, что

, а

Подставляем в третье уравнение:

Решая это квадратное уравнение получаем, что

Подставляем эти значения во второе уравнение:

1.Подставим первый корень , получаем

2. Подставим второй корень , получаем

( X*,л*)

N

X1*

X2*

л*

ц(X*)

Примечание

1

0

Min

2

0

Max

- кривая a (окружность)

- кривая b (окружность)

Задача 3

· Решить на основе условий Куна-Таккера.

· Решение проиллюстрировать графически.

extr (X) = x1x2

при 6x1 + 4x2 12

2x1 + 3x2 24

- 3x1 + 4x2 12

Решение:

Решим задачу на основе условий Куна-Таккера.

Составим функцию Лагранжа:

Составим систему уравнений из частных производных и приравняем их к нулю:

Решим данную систему уравнений:

1.Предположим, что, тогда из уравнения 5 получим:

Предположим, что ,,, тогда из уравнения 1 получим:

Пусть , тогда из уравнения 2 получаем:

Это решение не удовлетворяет условиям задачи: (Х?0)

2.Предположим, что и , тогда из уравнения 1 получим:

Предположим, что , , , выразим из второго уравнения :

Подставим в 3 уравнение:

Получаем:, ,

В этой точке функция равна минимальному значению

3. Предположим, что , и , тогда из второго уравнения получим:

Предположим, что , и , тогда из второго уравнения следует:

Подставим в четвертое уравнение:

Получаем: , ,

В этой точке функция имеет максимальное значение:

X*

N

X1*

X2*

ц(X*)

Примечание

1

1

1,5

1,5

Min

2

6

4

24

Max

Прямая а соответствует графику функции 6х1+4х2=12

Прямая b - графику функции 2х1+3х2=24

Прямая с - графику функции -3х1+4х2=12

Прямая d - графику функции

Прямая е - графику функции

Задача 4

· Получить выражение расширенной целевой функции (РЦФ) и составить блок-схему алгоритма численного решения задачи методом штрафных функций в сочетании с одним из методов безусловной минимизации.

· Решить задачу средствами MS Excel.

· Решение проиллюстрировать графически.

max (X) = 2x1 + 4x2 - x12 - 2x22

при x1 + 2x2 8

2x1 - x2 12

X 0

Решение:

1. Найдем выражение вектор функции системы:

Составим функцию Лагранжа:

Вектор функция системы:

2. Составим матрицу Якоби

=

Размещено на Allbest.ru


Подобные документы

  • Численные методы поиска безусловного экстремума. Задачи безусловной минимизации. Расчет минимума функции методом покоординатного спуска. Решение задач линейного программирования графическим и симплексным методом. Работа с программой MathCAD.

    курсовая работа [517,9 K], добавлен 30.04.2011

  • Решение систем линейных алгебраических уравнений методом простой итерации. Полиномиальная интерполяция функции методом Ньютона с разделенными разностями. Среднеквадратическое приближение функции. Численное интегрирование функций методом Гаусса.

    курсовая работа [2,4 M], добавлен 14.04.2009

  • Понятие генетического алгоритма и механизм минимизации функции многих переменных. Построение графика функции и ее оптимизация. Исследование зависимости решения от вида функции отбора родителей для кроссинговера и мутации потомков, анализ результатов.

    контрольная работа [404,7 K], добавлен 04.05.2015

  • Сущность понятия "симплекс-метод". Математические модели пары двойственных задач линейного программирования. Решение задачи симплексным методом: определение минимального значения целевой функции, построение первого опорного плана, матрица коэффициентов.

    курсовая работа [219,4 K], добавлен 17.04.2013

  • Составление математической модели задачи. Приведение ее к стандартной транспортной задаче с балансом запасов и потребностей. Построение начального опорного плана задачи методом минимального элемента, решение методом потенциалов. Анализ результатов.

    задача [58,6 K], добавлен 16.02.2016

  • Методы условной и безусловной нелинейной оптимизации. Исследование функции на безусловный экстремум. Численные методы минимизации функции. Минимизация со смешанными ограничениями. Седловые точки функции Лагранжа. Использование пакетов MS Excel и Matlab.

    лабораторная работа [600,0 K], добавлен 06.07.2009

  • Нахождение пределов функций. Определение значения производных данных функций в заданной точке. Проведение исследования функций с указанием области определения и точек разрыва, экстремумов и асимптот. Построение графиков функций по полученным данным.

    контрольная работа [157,0 K], добавлен 11.03.2015

  • Симплекс как геометрическая фигура, являющаяся мерным обобщением треугольника. Математика и её место в жизни человека. Алгоритм решения задачи "нахождение наименьшего значения линейной функции симплексным методом". Составление начальной симплекс таблицы.

    контрольная работа [484,7 K], добавлен 29.07.2013

  • Составление диагональной системы способом прогонки, нахождение решения задачи Коши для дифференциального уравнения на сетке методом Эйлера и классическим методом Рунге-Кутта. Построение кубического сплайна интерполирующей функции равномерного разбиения.

    практическая работа [46,1 K], добавлен 06.06.2011

  • Доказательство существования или отсутствия алгоритма для решения поставленной задачи. Определение алгоритмической неразрешимости задачи. Понятия суперпозиции функций и рекурсивных функций. Анализ схемы примитивной рекурсии и операции минимизации.

    курсовая работа [79,5 K], добавлен 12.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.