Элементарное изложение отдельных фрагментов теории подгрупповых функторов
Классы групп с заданными решетками подгрупповых функторов. Бинарная алгебраическая операция. Группа с коммутативной операцией. Основная теорема о гомоморфизме. Определения и основные примеры подгрупповых функторов. Решетки подгрупповых функторов.
Рубрика | Математика |
Предмет | Математика |
Вид | дипломная работа |
Язык | русский |
Прислал(а) | Борсуков Стас Борисович |
Дата добавления | 02.02.2010 |
Размер файла | 471,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Анализ теорем сопряженных функторов. Естественное преобразование как семейство морфизмов. Характеристика свойств рефлективных подкатегорий. Знакомство с универсальными стрелками. Рассмотрение особенностей метода построения сопряженных функторов.
курсовая работа [3,1 M], добавлен 27.01.2013Выработка современного абстрактного понятия групп. Простейшие свойства конечных нильпотентных групп. Подгруппа Фраттини конечной группы нильпотентна. Нахождение прямого произведения нильпотентных групп. Бинарная алгебраическая операция на множестве.
курсовая работа [393,4 K], добавлен 21.09.2013Бинарная алгебраическая операция. Разновидности групп, использование рациональных чисел вместо вещественных. Действие группы на множестве. Группа симметрий тетраэдра. Формулировка и доказательство леммы Бернсайда о количестве орбит. Задачи о раскрасках.
курсовая работа [822,9 K], добавлен 25.02.2015Понятие и виды бинарной алгебраической операции. Определения, примеры и общие свойства -перестановочных подгрупп. Характеристика и методика решения конечных групп с заданными -перестановочными подгруппами. Доказательство p-разрешимости конечных групп.
курсовая работа [1,1 M], добавлен 22.09.2009Доказательство первой, второй и третей теоремы Силова. Описание групп порядка pq. Смежные классы по подгруппе и теорема Лагранжа. Классы сопряженных элементов. Нормализатор множества в группе. Теоремы о гомоморфизмах. Примеры силовских подгрупп.
курсовая работа [246,9 K], добавлен 21.04.2011Возведение в степень комплексного числа. Бинарная алгебраическая операция. Геометрическая интерпретация комплексных чисел. Базис, ранг и линейные комбинации для системы векторов. Кратные корни многочлена. Разложение многочлена на элементарные дроби.
контрольная работа [247,0 K], добавлен 25.03.2014Теория групп как фундаментальное понятие и один из разделов современной математики. Основные определения и теоремы. Смежные классы: правые и левые, двойные. Нормальные подгруппы, фактор-группы. Способы их использования в решении различных задач.
курсовая работа [136,6 K], добавлен 30.03.2010Определение, типы и примеры отношений, способы их задания; алгебраическая и геометрическая интерпретации. Разбиение на классы и фактор-множество. Смысл отношения эквивалентности. Теорема о равносильности определений. Отношения в школьной математике.
курсовая работа [1,0 M], добавлен 01.10.2011Группа как непустое множество с бинарной алгебраической операцией, ее свойства и требования. Представления унитарными матрицами и полная приводимость представлений конечных групп. Доказательство основных теорем. Соотношения ортогональности для характеров.
курсовая работа [380,6 K], добавлен 22.09.2009Основы геометрии чисел. Решетки, подрешетки и их базисы. Основные теоремы геометрии чисел. Связь квадратичных форм с решетками. Методы геометрии чисел для решения диофантовых уравнений. Теорема Минковского о выпуклом теле. Квадратичная форма решетки.
дипломная работа [884,6 K], добавлен 24.06.2015