Предикаты: определения и примеры

Необходимость введения предикатов в математику. Предикат как один из элементов логики первого и высших порядков. Предикат, в котором нет переменных для замены - нульместный предикат. Изображение области истинности предиката на декартовой плоскости.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 24.07.2014
Размер файла 94,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

РЕФЕРАТ

на тему: "Предикаты: определения и примеры"

2014

Оглавление

  • Введение
  • Предикаты: определения и примеры
  • Заключение
  • Список используемых источников

Введение

В чем состоит необходимость введения предикатов в математику?

Дело в том, что сама по себе логика высказываний обладает довольно слабыми выразительными возможностями. Пользуясь только логикой, нельзя выразить даже очень простые, с математической точки зрения, рассуждения.

Возьмем, например, следующее умозаключение. "Всякое целое число является рациональным. Число 5 - целое. Следовательно, 5 - рациональное число". Все эти три утверждения с точки зрения логики высказываний являются атомарными. Т.е. только средствами логики высказываний нельзя вскрыть внутреннюю структуру и поэтому нельзя доказать логичность этого рассуждения в рамках логики высказываний. Средства, предоставляемые логикой высказываний, оказываются недостаточными для анализа многих математических рассуждений. В алгебре логики не рассматриваются ни структура высказываний, ни тем более, их содержание. В то же время и в науке, и в практике используются заключения, существенным образом зависящие как от структуры, так и от содержания используемых в них высказываний.

Например, в рассуждении " Всякий ромб - параллелограмм; ABCD - ромб; следовательно, ABCD - параллелограмм" посылки и заключение являются элементарными высказываниями логики высказываний, и с точки зрения этой логики рассматриваются как целые, неделимые, без учёта их внутренней структуры. Следовательно, алгебра логики, будучи важной частью логики, оказывается недостаточной в анализе многих рассуждений.

Поэтому возникает необходимость в расширении логики высказываний и построении такой логической системы, средствами которой можно исследовать структуру и содержание тех высказываний, которые в логике высказываний рассматриваются как элементарные.

В силу изложенного материала, можно заключить, что актуальность данной работы несомненна.

Цель данного реферата заключается в том, чтобы совершить обзор

литературных источников по проблеме предикатов в дискретной математике.

Для достижения поставленной цели необходимо решить следующие задачи:

· найти нужную информацию о предикатах по данной теме;

· тщательно проанализировать и выбрать нужные данные;

· оформить реферат согласно требованиям.

Объектом исследования является архив материалов по математическим предикатам.

Предметом исследования являются предикаты в дискретной математике.

Реферат состоит из введения, основной части, заключения и списка использованной литературы.

Предикаты: определения и примеры

Введем основное понятие темы.

Определение 1. Пусть М - непустое множество. Тогда n-местным предикатом, заданным на М, называется выражение, содержащее n переменных и обращающееся в высказывание при замене этих переменных элементами множества М [1].

Поясним конкретными примерами. Пусть М есть множество натуральных чисел N. Тогда, например, такие выражения: "x - простое число", "x - четное число", "x больше 10" являются одноместными предикатами. При подстановке вместо x произвольных натуральных чисел получаются высказывания: "2 - простое число", "6 - простое число", "3 - четное число", "5 больше 10" и т.д. [2]

Множество M, на котором задан предикат, называется областью определения предиката [3].

Множество , на котором предикат принимает только истинные значения, называется областью истинности предиката Р (х) [3].

Так, предикат P (x) - "х - простое число" определён на множестве N, а множество для него есть множество всех простых чисел.

Вот такие выражения: " x больше y", " x делит y нацело", " x плюс y равно 10, или x+y=10 " являются двухместными предикатами. Примеры трехместных предикатов, заданных на множестве натуральных чисел: " число z лежит между x и y", " x плюс y равно z", " |x-y| = z " [4].

Обычно полагают, что, если имеется такой предикат, в котором нет переменных для замены, то подобное высказывание - нульместный предикат [1].

Причем местность предикатов не всегда равна числу всех переменных, содержащихся в выражении.

Например, выражение " существует число x такое, что y = 2 x " на множестве натуральных чисел определяет одноместный предикат.,

По смыслу этого выражения, в нем можно заменять только переменную y. Например: если применить замену y на 6, то получим истинное высказывание: " существует число x такое, что 6 = 2x", а если заменим y на 7, то получим ложное (на множестве N) высказывание: " существует число x такое, что 7 =2x".

Предикат с заменяемыми переменными x1,…,xn обычно обозначается заглавной латинской буквой, после которой в скобках указываются эти переменные. Например, P (x1,x2), Q (x2,x3), R (x1). Среди переменных в скобках могут быть и фиктивные [2].

Определение 2. Предикат (n-местный, или n-арный) - это функция с областью значений (или " Истина " и " Ложь "), определённая на n-й декартовой степени множества M. Таким образом, каждую n-ку элементов M предикат характеризует либо как "истинную", либо как "ложную" [5].

Предикат можно связать с математическим отношением: если n-ка принадлежит отношению, то предикат будет возвращать на ней 1 [3].

Предикат - один из элементов логики первого и высших порядков. Начиная с логики второго порядка, в формулах можно ставить кванторы по предикатам [3].

Предикат называют тождественно - истинным [2] и пишут:

P ,

если на любом наборе аргументов он принимает значение 1.

Предикат называют тождественно - ложным [2] и пишут:

P ,

если на любом наборе аргументов он принимает значение 0.

Предикат называют выполнимым, если хотя бы на одном наборе аргументов он принимает значение 1 [5].

Например, обозначим предикатом EQ (x, y) отношение равенства (" x = y "), где x и y принадлежат множеству вещественных чисел. В этом случае предикат EQ будет принимать истинное значение для всех чисел, равных x и y.

Более житейским примером может служить предикат " ПРОЖИВАЕТ (x, y, z)" для отношения " x проживает в городе y на улице z " или предикат " ЛЮБИТ (x, y)" для выражения " x любит y", где множество M - это множество всех людей.

Так как предикаты принимают только два значения, то к ним применимы все операции булевой алгебры, например: отрицание, импликация, конъюнкция, дизъюнкция и т.д. Итак, на совокупности всех предикатов, заданных на множестве М, вводятся знакомые логические операции: конъюнкция, дизъюнкция, отрицание, импликация и эквиваленция. Эти операции вводятся довольно очевидным образом. Приведем в качестве примера определение конъюнкции предикатов.

Определение 3. Предикат W (x1,…,xn) называется конъюнкцией предикатов U (x1,…,xn) и V (x1,…,xn), заданных на множестве М, если для любых а1,…, аn из М высказывание W (а1,…, аn) есть конъюнкция высказываний U (а1,…, аn) и V (а1,…, аn) [2].

Аналогично приводятся определения и других упомянутых выше операций.

В логике предикатов первого порядка вводятся и две новые операции. Называются они квантором общности и квантором существования [1]. Эти операции рассмотрим сначала на примерах.

Пусть дано выражение: " существует число х, такое, что x + y=10". На множестве натуральных чисел это предложение определяет одноместный предикат P (y), так, например, Р (2) и Р (9) - истинные высказывания, а Р (11) - ложное. Если обозначить предикат " x + y = 10 " через S (x,y) (а это предикат двухместный), то P (y) можно записать так: " существует х такой, что S (x,y)". В этом случае говорят, что предикат P (y) получен из предиката S (x,y) навешиванием квантора существования на x и пишут P (y) = (?x) S (x,y)

Рассмотрим другой пример. Выражение " для всех х справедливо, что y = - х2 " определяет на множестве целых чисел одноместный предикат Q (y). Если предикат " y = - х2 " обозначить через T (x,y), то Q (y) можно записать так: "для всех x справедливо T (x,y)". В таком случае говорят, что предикат Q (y) получен из предиката T (x,y) навешиванием квантора общности на х и пишут Q (y) = (?x) T (x,y).

Пользуясь этими примерами, дадим определение в общем виде.

Определение 4. Пусть P (x1,…,xn) - предикат, заданный на множестве M, y - переменная. Тогда выражение: " для всякого y выполняется P (x1,…,xn)" - предикат, полученный из P навешиванием квантора общности на переменную y, а выражение " существует y такой, что выполняется P (x1,…,xn)" - предикат, полученный из P навешиванием квантора существования на переменную y [1].

Заметим, что в определении не требуется, чтобы y была одна из переменных x1,…,xn, хотя в содержательных примерах, квантор навешивается на одну из переменных x1,…,xn. Указанное требование не накладывается, чтобы избежать усложнения определения формулы логики предикатов. Если y - одна из переменных x1,…,xn, то после навешивания квантора на y новый предикат является (n-1) - местным, если y{ x1,…,xn}, то местность нового предиката равна n [3].

Если предикат W (x1,…,xn) получен из предикатов U (x1,…,xn) и V (x1,…,xn) с помощью связок, то истинность высказывания W (a1,…,an) определяется таблицами истинности этих связок [3]. Пусть W (x1,…,xn) = (?y) U (x1,…,xn,y). Тогда высказывание W (a1,…,an) истинно тогда и только тогда, когда для любого b M истинно высказывание U (a1,…,an,b). Если же W (x1,…,xn) = (?y) U (x1,…,xn,y), то высказывание W (a1,…,an) истинно в том и только в том случае, когда найдется b M, для которого высказывание U (a1,…,an) истинно [4].

Вообще понятие предиката - весьма широкое понятие [1]. Это видно уже из приведенных выше римеров. Тем не менее, еще раз подчеркнем, показав, что n - местная функция может рассматриваться как (n+1) - местный предикат. Действительно, функции y = f (x1,…,xn), заданной на множестве М, можно поставить в соответствие выражение " y равно f (x1,…,xn)". Это выражение есть некоторый предикат P (x1,…,xn,y). При этом, если элемент b есть значение функции в точке (a1,…,an), то высказывание P (a1,…,an,b) истинно, и обратно. (Подобное "превращение" функции в предикат мы уже привели в качестве примера выше для сложения натуральных чисел.)

На предикаты можно взглянуть и более формально, причем с двух точек зрения.

Во-первых, предикат можно представить отношением следующим образом.

Пусть предикат P (x1,…,xn) задан на множестве M. Рассмотрим прямую степень этого множества Mn = Mx Mx…xM и подмножество Dp множества Mn, определяемое равенством:

Dp = { (a1,…,an) Mn высказывание P (a1,…,an) истинно}.

Отношение Dp можно назвать областью истинности предиката P. Во многих случаях предикат P можно отождествить с отношением Dp.

При этом, правда, возникают некоторые трудности при определении операций над отношениями, аналогичными операциям над предикатами [4].

Во-вторых, предикат P (x1,…,xn), заданный на M, можно отождествить с функцией fp: Mn {0,1}, определяемой равенством:

Говорят, что предикат Р (х) является следствием предиката Q (х) [5]: , если ; и предикаты Р (х) и Q (х) равносильны:

,

Если

.

Приведём примеры к изложенному материалу.

Пример 1. Среди следующих предложений выделить предикаты и для каждого из них указать область истинности, если M = R для одноместных предикатов и M = RЧR для двухместных предикатов [1]:

1. х + 5 = 1

2. При х = 2 выполняется равенство х2 - 1 = 0

3. х2 - 2х + 1 = 0

4. Существует такое число х, что х3 - 2

5. х + 2 < Зх - 4

6. Однозначное неотрицательное число х кратно 3

7. (х + 2) - (3х - 4)

8. х2 + у2 > 0

10

Решение.

1) Предложение является одноместным предикатом Р (х), IP = { - 4};

2) Предложение не является предикатом. Это ложное высказывание;

3) Предложение является одноместным предикатом Р (х), IP ={1};

4) Предложение не является предикатом. Это истинное высказывание;

5) Предложение является одноместным предикатом Р (х), IP = (3; +?);

6) Предложение является одноместным предикатом Р (х), IP = {0; 3; 6; 9};

7) Предложение не является предикатом;

8) Предложение является двухместным предикатом Q (х,y), IQ = RЧR \ { (0,0) }.

Пример 2. Изобразить на декартовой плоскости область истинности предиката [2].

Решение. Неравенство, составляющее исходный предикат, ограничивает часть плоскости, заключенную между ветвями параболы х = у2, она изображена серой частью рисунка:

Рисунок 1. График параболы х = у2

Предикаты, вслед за высказываниями, являются следующим важным предметом, исследуемым математической логикой.

Понятие предиката обобщает понятие высказывания, а теория предикатов представляет собой более тонкий инструмент, по сравнению с теорией высказываний, для изучения закономерностей процессов умозаключения и логического следования, составляющих предмет математической логики [1].

Таким образом, в основном, термин " предикат " понимается в смысле исходного определения, т.е. как языковое выражение. Связано это с тем, что одной из главных целей введения предикатов, как уже отмечалось во введении, является изучение выразительных возможностей логики первого порядка, возможности представления средствами этой логики информации, выраженного на каком - либо естественном языке людей, например, на русском или английском языке.

предикат декартова плоскость математика

Заключение

Логика предикатов, как и традиционная формальная логика, расчленяет элементарное высказывание на субъект (буквально - подлежащее, хотя оно может играть и роль дополнения) и предикат (буквально - сказуемое, хотя оно может играть и роль определения).

Субъект - это то, о чем что - то утверждается в высказывании, а предикат - это то, что утверждается о субъекте. Логика предикатов - это расширение логики высказываний за счет использования предикатов в роли логических функций.

Итак, актуальность темы реферата несомненна. Цель достигнута и задачи выполнены. Литература просмотрена, выбрана, проанализирована, результаты представлены в данном реферате.

Список используемых источников

1. Эвнин А.Ю. Дискретная математика. Конспект лекций. 1998.

2. Ерусалимский А.Я. Дискретная математика. Теория. Задачи. Приложения. 2000.

3. Электронный источник. URL: http://forum. vopr.net

4. Электронный источник. http://lib. mexmat.ru/books/109887

5. Электронный источник. http://lib. mexmat.ru/books/81214

Размещено на Allbest.ru


Подобные документы

  • Определение машины Тьюринга и особенности ее применения к словам, принципы конструирования. Правильная вычислимость функций на машине Тьюринга, ее композиция. Современные электронно-вычислительные машины, анализ и оценка их функциональных возможностей.

    курсовая работа [258,7 K], добавлен 22.05.2015

  • Понятие предикатов и кванторов, порядок составления логических формул. Запись предиката как множество высказываний, формулы их исчисления. Аксиоматическое и натуральное представление узкого исчисления предикатов, погружение аристотелевской силлогистики.

    контрольная работа [35,0 K], добавлен 12.08.2010

  • Построение таблицы истинности. Доказательство истинности заключения путём построения дерева доказательства или методом резолюции. Выполнение различных бинарных операций. Построение графа вывода пустой резольвенты. Основные правила исчисления предикатов.

    курсовая работа [50,7 K], добавлен 28.05.2015

  • Этапы развития логики. Имена ученых, внесших существенный вклад в развитие логики. Ключевые понятия монадической логики второго порядка. Язык логики предикатов. Автоматы Бучи: подход с точки зрения автоматов и полугрупп. Автоматы и бесконечные слова.

    курсовая работа [207,1 K], добавлен 26.03.2012

  • Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.

    контрольная работа [133,5 K], добавлен 08.06.2010

  • Поняття, структура та типи судження у формальній логіці. Перевірка його істинності чи хибності. Суб'єкт, предикат і зв'язка простого атрибутивного судження. Посилання та висновок як складові частини силогізму. Структура простого категоричного силогізму.

    контрольная работа [21,2 K], добавлен 25.01.2010

  • Понятие функции двух и более переменных, ее предел и непрерывность. Частные производные первого и высших порядков. Определение полного дифференциала. Необходимые и достаточные условия существования экстремума и его нахождение на условном множестве.

    реферат [145,4 K], добавлен 03.08.2010

  • Понятия зависимой, независимой переменных, области определения функции. Примеры нахождения области функции. Примеры функций нескольких переменных: линейная, квадратическая, функция Кобба-Дугласа. Построение графика и линии уровня функции двух переменных.

    презентация [104,8 K], добавлен 17.09.2013

  • Понятие, предел и непрерывность функции двух переменных. Частные производные первого порядка, нахождение полного дифференциала. Частные производные высших порядков и экстремум функции нескольких переменных. Необходимые условия существования экстремума.

    контрольная работа [148,6 K], добавлен 02.02.2014

  • Порядок доказательства истинности заключения методом резолюции (с построением графа вывода пустой резольвенты) и методом дедуктивного вывода (с построением графа дедуктивного вывода). Выполнение бинарных операций и составление результирующих таблиц.

    курсовая работа [185,3 K], добавлен 24.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.