Математические модели естествознания
Основные модели естествознания, подходы к исследованию явлений природы, её фундаментальных законов на основе математического анализа. Динамические системы, автономные дифференциальные уравнения, интегро-дифференциальные уравнения, законы термодинамики.
| Рубрика | Математика | 
| Вид | курс лекций | 
| Язык | русский | 
| Дата добавления | 02.03.2010 | 
| Размер файла | 1,1 M | 
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
- Описание модели Крамера-Лундберга с гамма-распределением величин исков. Дифференциальные, интегро-дифференциальные уравнения для вероятностей неразорения страховой компании в случае гамма-распределения исков. Теорема существования, единственности решений. 
 курсовая работа [1,5 M], добавлен 20.01.2015
- Дифференциальные уравнения при входном воздействии типа скачка для заданной электрической цепи. Применение преобразования Лапласа при нулевых начальных условиях. Решение уравнения операторным методом. Построение частотных характеристик цепи. Ее динамика. 
 курсовая работа [721,0 K], добавлен 27.05.2008
- Линейные однородные дифференциальные уравнения второго порядка, общий вид. Линейная зависимость векторов и функций. Определитель Вронского, практические примеры его нахождения. Неоднородные уравнения второго порядка, теорема и доказательство, решение. 
 презентация [272,9 K], добавлен 17.09.2013
- Дифференциальные уравнения как модели эволюционных процессов. Автономные системы дифференциальных уравнений и их фазовые пространства. Асимптотическая устойчивость линейных однородных автономных систем. Изображения фазовых кривых при помощи ПО Maple. 
 дипломная работа [477,4 K], добавлен 17.06.2015
- Порядок решения дифференциального уравнения 1-го порядка. Поиск частного решения дифференциального уравнения, удовлетворяющего указанным начальным условиям. Особенности применения метода Эйлера. Составление характеристического уравнения матрицы системы. 
 контрольная работа [332,6 K], добавлен 14.12.2012
- Установление прямой зависимости между величинами при изучении явлений природы. Свойства дифференциальных уравнений. Уравнения высших порядков, приводящиеся к квадратурам. Линейные однородные дифференциальные уравнения с постоянными коэффициентами. 
 курсовая работа [209,4 K], добавлен 04.01.2016
- Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения. 
 презентация [206,3 K], добавлен 17.09.2013
- Обобщенные координаты, силы и скорости. Условия равновесия системы в обобщенных координатах. Уравнения Лагранжа. Системы с голономными связями (геометрические и интегрируемые дифференциальные). Доказательство уравнения движения механической системы. 
 презентация [1,4 M], добавлен 26.09.2013
- История развития теории дифференциальных включений в математике. Элементы многозначного анализа. Операции над множествами. Понятия многозначного отображения. Дифференциальные включения и особенности их решения. Уравнения в паратингенциях и контингенциях. 
 курсовая работа [596,8 K], добавлен 08.09.2012
- Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли. 
 лекция [520,6 K], добавлен 18.08.2012
