Знаходження власних значеннь лінійого оператора
Означення і найпростіші властивості лінійних операторів. Контрольний приклад отримання власних значень. Матриця лінійного оператора. Опис та текст програми. Власні вектори й значення лінійного оператора. Теорія лінійних просторів та її застосування.
Рубрика | Математика |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 28.03.2009 |
Размер файла | 74,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
4
Міністерство освіти і науки України
ФАКУЛЬТЕТ ІНФОРМАТИКИ
КАФЕДРА ІНФОРМАЦІЙНИХ УПРАВЛЯЮЧИХ СИСТЕМ ТА ТЕХНОЛОГІЙ
Реєстраційний №________
Дата ___________________
КУРСОВА РОБОТА
Тема:
Знаходження власних значень лінійного оператора
Рекомендована до захисту
“____” __________ 2008р.
Робота захищена
“____” __________ 2008р.
з оцінкою
_____________________
Підписи членів комісії
Зміст
Вступ
Теоретична частина
1. Означення і найпростіші властивості лінійних операторів
2. Матриця лінійного оператора
3. Власні вектори й власні значення лінійного оператора
Практична частина
1. Опис програми
2. Текст програми
3. Контрольний приклад
Висновок
Список літератури
Вступ
Власні значення грають при вивченні лінійних операторів дуже велику роль.
Нехай в дійсному лінійному просторі задан лінійний оператор . Якщо вектор , відмінний від нуля, переводиться оператором у вектор, пропорційний самому ,
,
де - деяке дійсне число, то вектор називається власним вектором оператора , а число - власним значенням цього оператора, причому, власний вектор відноситься до власного значення .
Обертання евклідової площини навколо початку координат на кут, що не являється кратним , є прикладом лінійного оператора, що не має власних векторів. Прикладом іншого випадку є розтягнення площини, при якому всі вектори, що виходять з початку координат, причому всі нульові вектори площини будуть для нього власними; всі вони відносяться до власного значення 5.
Теоретична частина
1. Означення і найпростіші властивості лінійних операторів
В теорії лінійних просторів та її застосування важливу роль відіграють лінійні оператори, які інакше називають лінійними перетвореннями.
Нехай - деякий векторний простір над полем .
Означення 1. Вважають, що у векторному просторі задано оператор, якщо вказано правило (закон), за яким кожному вектору простору ставиться у відповідність деякий вектор цього ж простору. Про цьому вектор називають образом вектора , а називають прообразом вектора .
Як бачимо, оператор у векторному просторі - це функція, множиною відправлення і множиною прибуття якої є простір .
Означення 2. Оператор у векторному просторі називається лінійним, якщо він задовольняє такі умови:
Лінійні оператори в просторі називають також лінійним перетворенням простору .
З означення 2 випливають безпосередньо такі властивості лінійних операторів:
1. Будь-який лінійний оператор у просторі залишає нерухомим нульовий вектор цього простору, тобто .
2. Всякий лінійний оператор у просторі протилежному вектору - будь-якого вектора , ставить у відповідність вектор, протилежний образу вектора , тобто .
3. Кожен лінійний оператор у просторі будь-який лінійний комбінації довільно вибраних векторів простору ставить у відповідність лінійну комбінацію (з тими самими коефіцієнтами) образів цих векторів, тобто .
2. Матриця лінійного оператора
Нехай - деякий лінійний оператор у просторі . Виберемо в який-небудь базис . Оператор відображає вектори цього базису в деякі вектори . Кожен вектор єдиним способом лінійно виражається через вектори базису . Припустимо, що
Складемо з коефіціентів матрицю . Рядками матриці є координатні рядки векторів в базисі . Оскльки координатні рядки векторів визначені однозначно, то й матриця визначається оператором в базисі .
Будемо вважати, що в базисі лінійний оператор задається матрицею .
Отже, при зафіксованому базисі кожному лінійному оператору простору відповідає певна квадратна матриця -го порядку - матриця цього оператора.
3. Власні вектори й власні значення лінійного оператора
Означення 1. Підпростір лінійного простору називається інваріантним відносно оператора , якщо , тобто якщо образ будь-якого вектора із міститься в .
Нехай -одновимірний підпростір простору , а -деякий лінійний оператор цього простору. Підпростір , як відомо, породжується будь-яким своїм вектором , тобто є сукупністю всіх векторів виду , де - будь яке число з поля Р. Якщо підпростір інваріантний відносно оператора , то , тобто , де --деяке число з поля Р. Тоді й для будь-якого вектора підпростору , бо , і тому .
Означення 2. Вектор , що заддовільняє співвідношення , де називається власним вектором оператора , а число - власним значенням оператора , що відповідає власному вектору .
Отже, якщо одглвимірний підпростір простору інваріантний відносно лінійного оператора , то всі вектори цього підпростору є власними векторами оператора з тим самим власним значенням оператора .
Практична частина
1. Опис програми
n - вимірність матриці;
m - максимальне допустиме число ітерацій;
e - точність;
a - на вході - двовимірний масив елементів матриці А, на виході матриця А блочно-діагональна, причому блоки розміри 1х1 містять дійсні власні значення, блоки розміру 2х2 містять комплексні власні значення, записані в стовпцях (рядках) для правих (лівих) власних векторів;
t - двовимірний масив власних векторів А;
b - цілочислова змінна.
Лінійний оператор потрібно задати за допомогою матриці.
2. Текст програми
uses crt;
const dim=10;
type ar=array[1..dim,1..dim]of real;
var ff:text;
i100,j100,n100,b,m:integer;
e:real;
a,t:ar;
procedure eigen(n,m:integer;e:real;var a,t:ar;var b:integer);
var c,c1,c2,co,ch,d,e1,f,g,h,p,r,s,s1,s2,si,sh,x,y:real;
i,j,k,n1,q:integer;
u,v,w,z:boolean;
function zn(x:real):integer;
begin if x<0 then zn:=-1 else zn:=1; end;
begin
u:=false;v:=u;w:=u;n1:=n-1;e1:=sqrt(e);
if b<>0 then
begin
if b<0 then v:=true else w:=true;
for i:=1 to n do
for j:=1 to n do
if i=j then t[i,j]:=1 else t[i,j]:=0;
end;
for q:=1 to m do
begin
if u then begin b:=1-q; exit; end;
i:=1; z:=false;
repeat
j:=i+1;
repeat
if(abs(a[i,j]+a[j,i])>e1) or
(abs(a[i,j]-a[j,i])>e1) and
(abs(a[i,i]-a[j,j])>e1) then z:=true;
j:=j+1;
until (j>n) or z;
i:=i+1;
until (i>n1) or z;
if not z then begin b:=q-1; exit; end;
u:=true;
for k:=1 to n1 do
for j:=k+1 to n do
begin
h:=0; g:=0; f:=0; y:=0;
for i:=1 to n do
begin
x:=sqr(a[i,k]);d:=sqr(a[i,j]); y:=y+x-d;
if (i<>k) and (i<>j) then
begin
h:=h+a[k,i]*a[j,i]-a[i,k]*a[i,j];
p:=x+sqr(a[j,i]); r:=d+sqr(a[k,i]);
g:=g+p+r; f:=f-p+r;
end;
end;
h:=2*h; d:=a[k,k]-a[j,j];
p:=a[k,j]+a[j,k]; r:=a[k,j]-a[j,k];
if abs(p)<=e then begin c:=1; s:=0; end
else
begin
x:=d/p; c:=x+zn(x)*sqrt(1+x*x);
s:=zn(x)/sqrt(1+c*c); c:=s*c;
end;
if y<0 then begin x:=c; c:=s; s:=-x; end;
co:=c*c-s*s; si:=2*s*c; d:=d*co+p*si;
h:=h*co-f*si; x:=(r*d-h/2)/(g+2*(r*r+d*d));
if abs(x)<=e
then begin ch:=1; sh:=0; end
else begin ch:=1/sqrt(1-x*x); sh:=ch*x; end;
c1:=ch*c-sh*s; c2:=ch*c+sh*s;
s1:=ch*s+sh*c; s2:=-ch*s+sh*c;
if (abs(s1)>e)or(abs(s2)>e) then
begin
u:=false;
for i:=1 to n do
begin
p:=a[k,i];a[k,i]:=c1*p+s1*a[j,i];
a[j,i]:=s2*p+c2*a[j,i];
if v then
begin
p:=t[k,i]; t[k,i]:=c1*p+s1*t[j,i];
t[j,i]:=s2*p+c2*t[j,i];
end;
end;
for i:=1 to n do
begin
p:=a[i,k];a[i,k]:=c2*p-s2*a[i,j];
a[i,j]:=-s1*p+c1*a[i,j];
if w then
begin
p:=t[i,k];t[i,k]:=c2*p-s2*t[i,j];
t[i,j]:=-s1*p+c1*t[i,j];
end;
end;
end;
end;
end;
b:=m;
end;
begin clrscr;
write('введите максимальное количество итераций');read(m);
write('введите точность');read(e);
assign(ff,'vlasn.dat');
reset(ff);
read(ff,n100);
for i100:=1 to n100 do
for j100:=1 to n100 do
read(ff,a[i100,j100]);
b:=0;
eigen(n100,m,e,a,t,b);
for i100:=1 to n100 do begin
for j100:=1 to n100 do
write(a[i100,j100],' ');
writeln; end;
writeln;
writeln(b);
readkey;
end.
3. Контрольний приклад
При e=10-8 і m=50 для матриці
за 7 ітерацій знайдено власні значення
Тобо отримали такі власні значення , ,
Висновок
Таким чином, задача знаходження інваріантних відносно оператора одновимірних підпросторів простору рівнозначна задачі згаходження власних векторів оператора .
Список літератури
1. А. Г. Курош «Курс высшей алгебры», «Наука», Москва 1975
2. С. Т. Завало, В. М. Костарчук, Б. И. Хацет «Алгебра и теория чисел», Том 1,«Высшая школа», Киев 1974
3. С. Т. Завало, В. М. Костарчук, Б. И. Хацет «Алгебра и теория чисел», Том 2,«Высшая школа», Киев 1976
Подобные документы
Поняття лінійного оператора, алгебраїчні операції над ним та базові властивості. Лінійні перетворення (оператори) із простору V в W. Матриця лінійного оператора. Перетворення матриці оператора при заміні базису. власні значення і власні вектори.
курсовая работа [452,3 K], добавлен 25.03.2011Важливість ролі власних векторів. Векторний простір і лінійний оператор в ортогональному проектуванні його на площину. Роль одновимірних інваріантних підпросторів. Вигляд матриці оператора в базисі, що складається з власних векторів цього оператора.
лекция [120,9 K], добавлен 19.06.2011Зведення до канонічного вигляду кривих і поверхонь другого порядку методом ортогональних перетворень, побудова їх за заданими канонічними рівняннями. Визначення лінійних операторів та квадратичних форм. Власні вектори та значення лінійного оператора.
курсовая работа [1,9 M], добавлен 13.11.2012Розгляд поняття матриці, видів (нульова, блочна, квадратна) та дій над нею. Аналіз способів знаходження власних векторів і власних значень матриць згідно методів Данілевського, Крилова, Леверрьє, невизначених коефіцієнтів та скалярних добутків.
курсовая работа [445,1 K], добавлен 03.04.2010Методи зведення до канонічної форми задач лінійного програмування. Визначення шляхів знаходження екстремумів функцій графічним способом. Побудова початкового опорного плану методом "північно-західного" напрямку. Складання двоїстої системи матриць.
контрольная работа [262,0 K], добавлен 08.02.2010Класифікація та типи чисельних методів розв’язування систем лінійних рівнянь і обернення звернення матриць точні, ітераційні та комбіновані. Їх порівняльна характеристика та умови використання в окремих випадках. Вектори та операції над ними, норми.
презентация [85,6 K], добавлен 06.02.2014Загальна характеристика системи Moodle. Поняття кільця та його найпростіші властивості. Алгебраїчна форма запису комплексного числа. Основні типи бінарних відношень. Властивості операцій над множинами. Лінійні комбінації і лінійні оболонки векторів.
дипломная работа [1,0 M], добавлен 26.02.2014Послідовність графічного розв'язання задачі лінійного програмування. Сумісна система лінійних нерівностей, умови невід'ємності, визначення півплощини з граничними прямими. Графічний метод для визначення оптимального плану задачі лінійного програмування.
задача [320,6 K], добавлен 31.05.2010Определение оператора в гильбертовом пространстве. Индексы дефекта симметрического оператора. Преобразование Кэли и формулы Неймана. Формула Крейна для резольвент самосопряженных расширений заданного симметрического оператора, доказательство теорем.
курсовая работа [190,6 K], добавлен 18.08.2011Означення та властивості перетворення Лапласа, приклади розв'язання базових задач. Встановлення відповідності між двома точками за допомогою оператора. Застосування операційного методу математичного аналізу, проведення дій над логарифмами та числами.
реферат [217,2 K], добавлен 20.12.2010