Вектори, матриці та норми. Елементи векторної і матричної алгебри

Вектори як направлені відрізки, що мають довжину, напрям і положення в таких просторах і розглядаються як вектори-стовпці. Характеристика головних операцій над векторами, їх базис та норми. Дії над матрицями та їх власні значення, принципи нормування.

Рубрика Математика
Вид презентация
Язык украинский
Дата добавления 06.02.2014
Размер файла 50,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Класифікація та типи чисельних методів розв’язування систем лінійних рівнянь і обернення звернення матриць точні, ітераційні та комбіновані. Їх порівняльна характеристика та умови використання в окремих випадках. Вектори та операції над ними, норми.

    презентация [85,6 K], добавлен 06.02.2014

  • Розгляд поняття матриці, видів (нульова, блочна, квадратна) та дій над нею. Аналіз способів знаходження власних векторів і власних значень матриць згідно методів Данілевського, Крилова, Леверрьє, невизначених коефіцієнтів та скалярних добутків.

    курсовая работа [445,1 K], добавлен 03.04.2010

  • Поняття лінійного оператора, алгебраїчні операції над ним та базові властивості. Лінійні перетворення (оператори) із простору V в W. Матриця лінійного оператора. Перетворення матриці оператора при заміні базису. власні значення і власні вектори.

    курсовая работа [452,3 K], добавлен 25.03.2011

  • Важливість ролі власних векторів. Векторний простір і лінійний оператор в ортогональному проектуванні його на площину. Роль одновимірних інваріантних підпросторів. Вигляд матриці оператора в базисі, що складається з власних векторів цього оператора.

    лекция [120,9 K], добавлен 19.06.2011

  • Зведення до канонічного вигляду кривих і поверхонь другого порядку методом ортогональних перетворень, побудова їх за заданими канонічними рівняннями. Визначення лінійних операторів та квадратичних форм. Власні вектори та значення лінійного оператора.

    курсовая работа [1,9 M], добавлен 13.11.2012

  • Означення і найпростіші властивості лінійних операторів. Контрольний приклад отримання власних значень. Матриця лінійного оператора. Опис та текст програми. Власні вектори й значення лінійного оператора. Теорія лінійних просторів та її застосування.

    курсовая работа [74,8 K], добавлен 28.03.2009

  • Означення теорії множин. Дії над множинами. Алгебра множин. Вектори і прямий добуток множин. Властивості відношень. Способи задання функції. Сукупність підстановок множини. Алгебраїчні операції та системи. Властивості рефлексивності та симетричності.

    конспект урока [263,1 K], добавлен 28.06.2012

  • Збіжність ряду та базиси в нормованому просторі. Ряд Фур’є за ортонормованою системою. Деякі властивості біортогональних систем. Біортогональні системи в бананових просторах. Властивості базисів та особливості застосування рядів в бананових просторах.

    курсовая работа [363,1 K], добавлен 28.11.2014

  • Елементи загальної теорії багатомірних просторів, аксіоматика Вейля. Геометрія k-площин в афінному і евклідовому просторах: паралелепіпеди, симплекси, кулі. Застосування багатомірної геометрії: простір-час класичної механіки і теорії відносності.

    дипломная работа [1,0 M], добавлен 28.01.2011

  • Понятия векторной алгебры: нулевой, единичный, противоположный и коллинеарный векторы. Проекция вектора на ось. Векторный базис на плоскости и в пространстве. Декартова прямоугольная система координат. Действия над векторами, заданными координатами.

    презентация [217,3 K], добавлен 16.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.