Дослідження розвитку теорії ймовірності

Динаміка розвитку поняття ймовірності й математичного очікування. Закон більших чисел, необхідні, достатні умови його застосування. Первісне осмислення статистичної закономірності. Поява теорем Бернуллі й Пуассона - найпростіших форм закону більших чисел.

Рубрика Математика
Вид дипломная работа
Язык украинский
Дата добавления 11.02.2011
Размер файла 466,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Задамося деяким значенням і обчислимо ймовірність того, що величина відхилиться від свого математичного очікування не менше ніж на : .

Для цього відкладемо від крапки вправо й уліво по відрізку довжиною ; одержимо відрізок . Імовірність є не що інше, як імовірність того, що випадкова крапка потрапить не усередину відрізка , а зовні його (кінці відрізка ми в нього не включаємо): .

Для того щоб знайти цю ймовірність, потрібно підсумувати імовірності всіх тих значень, які лежать поза відрізком . Це ми запишемо в такий спосіб:

, де запис під знаком суми означає, що підсумовування поширюється на всі ті значення , для яких крапки лежать поза відрізком .

З іншого боку, напишемо вираження дисперсії величини по визначенню:

.

Тому що всі члени суми ненегативні, вона може тільки зменшитися, якщо ми поширимо її не на всі значення , а тільки на деякі, зокрема на ті, які лежать поза відрізком :

.

Замінимо під знаком суми вираження через . Тому що для всіх членів суми , то від такої заміни сума теж може тільки зменшитися, значить:

.

Але відповідно до формули сума, що коштує в правій частині цієї нерівності є не що інше, як імовірність влучення випадкової крапки зовні відрізка , отже , звідки безпосередньо випливає доказувана нерівність.

2. У випадку коли величина безперервна, доказ проводиться аналогічним образом із заміною ймовірностей елементом імовірності, а кінцевих сум - інтегралами. Дійсно,

,

де - щільність розподілу величини . Далі, маємо:

,

звідки й випливає нерівність Чебишева для безперервних величин.

Що й було потрібно довести.

Як наслідок зі своєї нерівності Чебишев одержує наступну теорему.

Теорема.

Якщо математичні очікування величин не перевершують якої-небудь кінцевої межі, то ймовірність, що середнє арифметичне N таких величин від середніх арифметичних їхніх математичних очікувань відрізняється менш чим на яку-небудь дану величину, зі зростанням числа N до , приводиться до одиниці.

Доказ.

Дійсно, розглянемо випадкову величину , що представляє собою середню арифметичну з даних випадкових величин.

; ;

.

Якщо обмежені математичні очікування випадкових величин і їхніх квадратів, то обмежені також і дисперсії, тобто Всі , де c-деяке число. Тоді

.

Застосуємо тепер нерівність Чебишева до :

, або

.

Переходячи до межі, одержуємо:

.

Що й було потрібно довести.

Це і є теорема Чебишева - закон більших чисел Чебишева. Ця теорема встановлює, що при досить більших n з імовірністю, близької до одиниці, можна думати, що середнє арифметичне випадкових величин як завгодно мало коливається біля деякого постійного числа-середніх їхніх математичних очікувань.

Теореми Пуассона й Бернуллі є окремими випадками закону більших чисел Чебишева.

Дійсно, нехай в n випробуваннях, подія A наступає з ймовірностями й не наступає з ймовірностями . Розглянемо випадкову величину - число настань події A в i-ом випробуванні. Тоді

; ; ,

задовольняє умовам теореми Чебишева, тобто

, або

,

де -середнє арифметичне з ймовірностей настань подій в окремих випробуваннях. А це і є теорема Пуассона.

Якщо всі , те й , і ми одержимо теорему Бернуллі:

.

Цікаво, що Чебишев не називав доведену теорему «законом більших чисел», хоча теорема Пуассона виходить із її як окремий випадок.

Знаючи, що теорема Бернуллі є часткою случаємо теореми Чебишева спробуємо довести її як прямий наслідок закону більших чисел Чебишева (тобто приведемо сучасний доказ теореми Бернуллі [3]). Повторимо сучасне формулювання теореми Бернуллі.

Теорема.

Нехай виробляється n незалежних досвідів. Якщо ймовірність настання події A у послідовності незалежних випробувань постійна й дорівнює p, те, яке б не було позитивне число , з імовірністю як завгодно близької до одиниці, можна затверджувати, що при досить великій кількості випробувань n різниця по абсолютній величині виявиться меншої, чим :

,

де -будь-яке мале число.

Доказ.

Розглянемо незалежні випадкові величини:

-число появ події A у першому досвіді;

-число появ події A у другому досвіді, і т.д.

Всі ці величини переривані й мають той самий закон розподілу, що виражається поруч виду:

0

1

q

p

так як подія A наступає з імовірністю p і не наступає з імовірністю q . Обчислимо математичне очікування кожної з величин :

,

дисперсію:

.

задовольняють умовам теореми Чебишева, тобто можемо застосувати нерівність Чебишева:

.

Так як , , а ,

то одержуємо вираження:

.

Звідси й треба справедливість доказуваної нерівності:

,

де -мале число при .

Чте й було потрібно довести.

3.4 Закон більших чисел для залежних випадкових величин

А.А. Марков під цим законом розумів закон, «у силу якого з імовірністю, як завгодно близької до вірогідності, можна затверджувати, що середнє арифметичне з декількох величин, при досить великій кількості цих величин, буде довільно мало відрізнятися від середніх арифметичних їхніх математичних очікувань». При такому розумінні закону більших чисел і теорема Бернуллі й теорема Пуассона й теорема Чебишева будуть його різними формами. Таке розуміння тепер загальноприйняте.

Чебишев поширив закон більших чисел на незалежні випадкові величини з рівномірно обмеженими дисперсіями: .

Марков розширив умови застосовності цього закону. У роботі «Поширення закону більших чисел на величини, що залежать друг від друга» Марков привів наступну теорему [1,6].

Теорема.

Якщо послідовність взаємно незалежних випадкових величин така, що

, те

.

Доказ.

Розглянемо величину

, .

Очевидно, що й величина обмежена <c, c-деяке число. Застосуємо тепер нерівність Чебишева до :

, або

.

Переходячи до межі одержуємо:

.

Що й було потрібно довести.

У цій роботі Марков доводить, що закон більших чисел застосуємо до , якщо й зв'язок величин така, що збільшення кожної з них спричиняє зменшення математичних очікувань інших.

Марков зауважує: «до того ж висновку про застосовність закону більших чисел не важко прийти й у випадку, коли математичне очікування при всякому зменшується зі збільшенням суми «.

Марков розглядає послідовність випадкових величин, зв'язаних у ланцюг. Такі ланцюги залежних величин одержали назву марковських ланцюгів. У цій роботі Марков розглядає простий ланцюг (простий ланцюг маркова - послідовність випадкових величин, кожна з яких може приймати будь-яке число рішень, причому ймовірності рішень при -м випробуванні одержують певні значення, якщо відомо тільки результат -го випробування), причому всі приймають значення тільки 0 або 1. Він установлює, що ці випадкові величини також підлеглі закону більших чисел. Потрібно відзначити, що в роботі Марков вимагав, щоб для всіх ймовірностей переходу виконувалася умова . Але висновки Маркова залишаються справедливими, якщо замість такого сильного обмеження вимагати тільки, щоб ця умова виконувалася хоча б для однієї ймовірності при кожному .

Наприкінці своєї роботи Марков робить висновок, що незалежність величин не становить необхідної умови для існування закону більших чисел.

У цей час використовується умову, аналогічна умові Маркова, але вже не тільки достатнє, але й необхідне для застосовності закону більших чисел до послідовності довільних випадкових величин [4].

Теорема.

Для того щоб для послідовності (як завгодно залежних) випадкових величин при будь-якому позитивному виконувалося співвідношення

, (3.4.1)

Необхідно й досить, щоб при

. (3.4.2)

Доказ.

Припустимо спочатку, що (2) виконано, і покажемо, що в цьому випадку виконано також (1). Позначимо через функцію розподілу величини

.

Легко перевірити наступний ланцюжок співвідношень:

Ця нерівність доводить достатність умови теореми.

Покажемо тепер, що умова (2) необхідно. Легко бачити, що

Таким чином,

.

Вибираючи спочатку як завгодно малим, а потім досить більшим, ми можемо зробити праву частину останньої нерівності як завгодно малої.

Що й було потрібно довести.

3.5 Посилення закону більших чисел. Поява необхідної й достатньої умов застосовності закону більших чисел

В 1923 р. А.Я. Хинчин установив закон повторного логарифма, що є своєрідним узагальненням і посиленням закону більших чисел[1]. Розглянемо отримані їм результати.

Відповідно до теореми Бернуллі, при для будь-якого

В 1909 р. Борель для довів, що , тобто що для більших із гнітючою ймовірністю повинна бути мала в порівнянні з , .

В 1917 р. Кантеллі поширив результат Бореля на кожне .

В 1913 р. Хаусдорф для випадку Бернуллі знайшов наступну оцінку: з імовірністю одиниця , де довільно.

В 1914 р. Харди й Литтльвуд показали, що з імовірністю одиниця .

А в 1923 р. Хинчин довів наступну теорему.

Теорема.

Якщо ймовірність появи події A у кожному з незалежних випробувань дорівнює , то число появ події A у випробуваннях при задовольняє співвідношенню:

.

Функція в цьому змісті є точною верхньою границею випадкової величини .

Представимо цей результат геометрично. Будемо по осі абсцис відкладати , а по осі ординат - . Проведемо в цій системі прямі: і . Теорема Бореля-Кантеллі затверджує, що при досить більших майже вірогідно, що буде полягати між прямими й . Але ці границі виявилися дуже широкі й Хинчин указав більше строгі границі зміни . Якщо ми проведемо криві

і (3.5.1)

, (3.5.1')

те по теоремі Хинчина, яке б не було , для досить більших різниця майже вірогідно укладена між цими кривими. Якщо ж взяти криві

і (3.5.2) , (3.5.2')

те майже вірогідно нескінченно багато разів вийде за межі цих кривих. Зобразимо схематично цю ситуацію.

Хоча Марков і розширив границі застосовності закону більших чисел, однак, остаточно це питання ще не було вирішено. Установити необхідні й достатні умови застосовності закону більших чисел удалося тільки завдяки застосуванню методів і понять теорії функцій.

В 1926 р. А.Н. Колмогоров установив ці умови у своїй роботі [5].

Визначення.

Випадкові величини послідовності називаються стійкими, якщо існує така числова послідовність , що для будь-якого позитивного , .

Якщо існують всі і якщо можна покласти, то говорять, що стійкість нормальна.

Якщо все рівно мірно обмежені, то з , , треба співвідношення , , і, отже, , .

Таким чином, стійкість обмеженої послідовності необхідно нормальна. Нехай .

По нерівності Чебишева .

Отже, умова Маркова: , , досить для нормальної стійкості.

Якщо рівномірно обмежені, , то по нерівності ,

.

Отже, у цьому випадку умова Маркова є також і необхідним для нормальної стійкості .

Якщо й величини попарно не корельоване, то .

Отже, у цьому випадку для нормальної стійкості середніх арифметичних , тобто для того, щоб для всякого

,

Досить виконання наступної умови: (теорема Чебишева). Зокрема, ця умова виконана, якщо всі величини рівномірно обмежені.

1. Можна узагальнити цю теорему на випадок слабко корельованих величин .

Якщо припустити, що коефіцієнт кореляції (ясно, що завжди ) між і задовольняє нерівності й що , то для нормальної стійкості середніх арифметичних, тобто для того, щоб для всякого

,

досить виконання умови , де .

2. У випадку незалежних доданків можна дати також необхідна й достатня умова для стійкості середніх арифметичних .

Для кожного існує константа (медіана ), що задовольняє наступним умовам: , .

Покладемо

Теорема.

Нехай - послідовність взаємно незалежних випадкових величин. Тоді умови

= , ,

,

необхідні й достатні для стійкості величин , При цьому постійні , , можна прийняти рівними , так що у випадку (і тільки в цьому випадку) стійкість нормальна.

Доказ.

Достатність умов теореми встановлюється просто. Справді оскільки а відповідно до нерівності Чебишева

те

Для доказу необхідності нам знадобиться ряд допоміжних пропозицій.

Лема 1.

Нехай - незалежні події, , і для якогось . Якщо, крім того, подія таке, що для кожного , то тоді .

Доказ.

Якщо існує такий номер , що , то .

Нехай тепер для всіх .

Тоді найдеться таке , що , і, виходить, для всіх

,

,

.

Звідси

.

Що й було потрібно довести.

Лема 2.

Нехай - незалежні, обмежені, , , випадкові величини з нульовими середніми. Тоді для всякого й цілого

, де .

Доказ.

Нехай , , , ,

. Зауважуючи, що на множині , одержуємо

З нерівності треба, що

.

Тому при кожному . Значить і .

Що й було потрібно довести.

Лема 3.

Нехай - незалежні, обмежені випадкові величини, причому , . Тоді

.

Доказ.

Позначимо , . Якщо або , то права частина в доказуваній нерівності негативна й нерівність очевидно.

Нехай тепер одночасно , . Тоді досить показати, що , оскільки, мабуть,

.

Позначимо . Якщо , то

і, виходить,

Припустимо, тепер, що .

Позначаючи й застосовуючи лему 2, знаходимо

Звідси

На множині .

Тому .

Ясно також, що .

Отже,

і, виходить, .

Що й було потрібно довести.

Доказ теореми. Необхідність.

Нехай послідовність , така, що для будь-якого , . Покажемо, що тоді

, .

Позначимо для даного

, ,

.

Оскільки - медіана , те .

Для досить більших , тому

, тобто .

Далі, якщо подія виконується, а ні, те виконується подія й, виходить, .

Але .

Отже, .

Застосуємо лему 1, взявши

. Тоді .

Події незалежні, тому .

Оскільки за умовою , , те з і одержуємо шукане співвідношення .

Покладемо тепер

Із треба, що якщо , , те й

, .

Позначимо . Тоді й по лемі 3

звідки .

Для .

Тоді з , і

треба, що

,

а значить у силу довільності

.

Що й було потрібно довести.

3. Подальше узагальнення теореми Чебишева виходить, якщо припустити, що яким-небудь образом залежать від рішень яких-небудь випробувань , так що після кожного певного результату всіх цих випробувань приймає певне значення. Загальна ідея віх теорем, відомих за назвою закону більших чисел, полягає в тому, що якщо залежність величини від кожного окремого випробування , , дуже мала при більших , то величини стійкі. Якщо розглядати як розумну міру залежності величини від випробування , то вищезгадана загальна ідея закону більших чисел може бути конкретизована наступними міркуваннями.

Нехай .

Тоді ,

,

.

Легко, далі, підрахувати, що випадкові величини , , не корильоване. Справді, нехай , тоді, знаючи, що , можна записати наступне:

і, отже, , .

Отже, .

Таким чином, умова , досить для нормальної стійкості величин .

Таким чином, була завершена одна із центральних проблем теорії ймовірностей - проблема закону більших чисел.

Висновок

Ми простежили динаміку розвитку поняття ймовірності; такого поняття в теорії ймовірностей, як математичне очікування, а також розвиток однієї із центральних теорем-закону більших чисел. Можемо зробити наступні висновки.

Простеживши динаміку розвитку й формування поняття ймовірності можна відзначити, що воно вироблялося складними шляхами. Поняття ймовірності наділялося у визначення різних форм і змістів.

Спочатку це поняття розуміли на чисто інтуїтивному рівні. Пізніше з'явилися різні визначення поняття ймовірності. Спостерігалися спроби вводити нові поняття, наприклад «властиво ймовірність», але ці спроби не увінчалися успіхом - це поняття не збереглося в науці. Надалі виникає необхідність у більше чіткому й строгому відношенні до основних понять теорії ймовірностей, тобто й до визначення поняття ймовірності. Цього вимагало розвиток статистичної фізики; цього вимагало розвиток самої теорії ймовірностей, у якій гостро стала відчуватися незадоволеність класичного обґрунтування лапласовського типу; цього вимагало й розвиток інших наук, у яких широко застосовувалися імовірнісні поняття. Ставало всі видно, що теорія ймовірностей має потребу в новому логічному обґрунтуванні - в обґрунтуванні за допомогою аксіоматичного методу. Багато вчених уживають спроби аксіоматичного визначення поняття ймовірності. Однак успішно ця задача була вирішена на початку XX в. Колмогоровим. Аксіоматика Колмогорова сприяла тому, що теорія ймовірностей остаточно зміцнилася як повноправна математична дисципліна.

Розвиток поняття математичного очікування також зустрічало ряд труднощів. Спроби ввести поняття морального очікування, яке б усувало недоліки математичного очікування - провалилися. Це відбулося через те, що поняття морального очікування не було пов'язане з поняттям імовірності на відміну від математичного очікування. У результаті поняття «математичне очікування» зайняло міцне місце, по праву йому приналежне, у теорії ймовірностей.

Динаміку розвитку закону більших чисел можна зрівняти з ієрархічною градацією. У основі її найпростіші теореми Бернуллі й Пуассона, а на вершині - критерій застосовності закону більших чисел (необхідна й достатня умови). На відміну від понять імовірності й математичного очікування, закон більших чисел не зіштовхувався з подібними протиріччями, у своєму трактуванні. Удосконалення закону більших чисел відбувалося плавно, без різких стрибків.

Список джерел

1. Майстров Л.Е. Теорія ймовірностей. Історичний нарис. - К., 2004

2. Майстров Л.Е. Розвиток поняття ймовірності. - К., 2003

3. Вентцель Е.С. Теорія ймовірностей. - К., 2005

4. Гнеденко Б.В. Курс теорії ймовірностей. - К., 1999

5. Колмогоров А.Н. Основні поняття теорії ймовірностей. - К., 2005

6. Історія вітчизняної математики. - К., 2005

7. Гливенко В.И. Курс теорії ймовірностей. - К., 1997.

8. Чебишев П.Л. Повне зібрання творів - Львів, 2000

9. Гнеденко Б.В., Колмогоров А.Н. Теорія ймовірностей. - К., 1999

Размещено на Allbest.ru


Подобные документы

  • Пошук ймовірності, що вибраний навмання учень хлопчик або дівчинка. Розрахунок ймовірності для контролю якості виготовленої продукції. Випадкова величина добового попиту на певний продукт. Біноміальний закон розподілу. Неперервна випадкова величина.

    контрольная работа [119,4 K], добавлен 13.10.2014

  • Оцінка ймовірності відхилення випадкової величини Х від її математичного сподівання. Знаходження дисперсії випадкової величини за допомогою теореми Бернуллі. Застосування для випадкової величини нерівності Чебишова. Суть центральної граничної теореми.

    реферат [88,5 K], добавлен 02.02.2010

  • Основні поняття теорії ймовірності. Аналіз дискретної випадкової величини, характеристика закону розподілу випадкової величини. Знайомство з властивостями функції розподілу. Графічне та аналітичне відображення законів ймовірності дискретних величин.

    реферат [134,7 K], добавлен 27.02.2012

  • Визначення ймовірності виходу приладу з ладу. Розв’язок задачі з використанням інтегральної формули Бернуллі та формулу Пуассона. Визначення математичного сподівання, середньоквадратичного відхилення, дисперсії, функції розподілу випадкової величини.

    контрольная работа [84,2 K], добавлен 23.09.2014

  • Етапи розвитку теорії ймовірностей як науки. Ігри казино як предмет математичного аналізу. Біологічна мінливість і імовірність. Застосування розподілів ймовірностей як спосіб опису біологічної мінливості. Помилкова точність та правила округлення чисел.

    реферат [26,4 K], добавлен 27.02.2011

  • Вивчення властивостей натуральних чисел. Нескінченість множини простих чисел. Решето Ератосфена. Дослідження основної теореми арифметики. Асимптотичний закон розподілу простих чисел. Характеристика алгоритму пошуку кількості простих чисел на проміжку.

    курсовая работа [79,8 K], добавлен 27.07.2015

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

  • Понятие вероятности, математического ожидания, закона больших чисел, динамика их развития. Введение аксиоматического определения понятия вероятности математического ожидания. Теоремы Бернулли и Пуассона как простейшие формы закона больших чисел.

    дипломная работа [388,7 K], добавлен 23.08.2009

  • Узагальнення поняття теорії кілець. Будова півкільця натуральних чисел. Довільний ідеал півкільця натуральних чисел. Теорії напівгруп та константи Фробениуса. Система відрахувань по модулю. База методу математичної індукції. Текст програми "FindC".

    курсовая работа [89,6 K], добавлен 26.01.2011

  • Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.

    научная работа [20,2 K], добавлен 29.12.2006

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.