Дифференциальная геометрия поверхностей Каталана
Подробный анализ поверхностей Каталана и условия, отделяющие этот класс от класса линейчатых поверхностей. Формулы для расчета первой и второй квадратичных форм поверхностей класса КА. Доказательство утверждений о влиянии вида кривых на тип поверхности.
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 06.06.2011 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2. Рассмотрен особый подкласс поверхностей Каталана - поверхности класса КА. Независимо выведено уравнение этого класса поверхностей, получены формулы для сведения произвольно заданной поверхности к уравнению найденного типа. Выведены формулы для расчета первой и второй квадратичных форм поверхностей класса КА, сформулирован и доказан ряд утверждений о влиянии вида кривых на тип поверхности класса КА.
3. Разработана программа визуализации и анализа параметрически заданных поверхностей, которая успешно решает задачу определения линейчатости поверхности для широкого спектра произвольно заданных уравнений поверхности. Позволяет наблюдать как результат - итоговые найденные прямые, так и промежуточные результаты (кривые нормального сечения).
4. Таким образом, поставленные перед автором задачи были полностью и успешно решены, однако, остались неохваченными некоторые полученные в ходе исследования новые уравнения, требующие дополнительного исследования (в частности, определения нахождения прямой на поверхности, имеющей общие точки со всеми образующими).
Список литературы
1. Рашевский П.К. Курс дифференциальной геометрии. - М.: Едиториал УРСС, 2003. - 432 с. - ISBN 5-354-00294-Х (Книга включает сведения о кривых на плоскости, по теории плоских и пространственных кривых и применении к ней дифференцирования вектор-функций, а также первоначальные сведения по теории поверхностей с изложением свойств и применений линейчатых и развертывающихся поверхностей и внутренней геометрии поверхностей. Рекомендуется математикам и механикам - студентам, аспирантам и научным работникам. Может служить в качестве учебного пособия).
2. Позняк Э.Г., Шикин Е.В. Дифференциальная геометрия: Первое знакомство. - Изд. 2-е исправл. и доп. - М.: Едиториал УРСС, 2003. - 488 с. - ISBN 5-354-0034301 (Книга знакомит с основными понятиями теории кривых и поверхностей, элементами тензорно исчисления, римановой геометрии и гладких многообразий, а также с некоторыми их приложениями в математике, физике, технике. Материал подробно проиллюстрирован примерами и рисунками. Книга рассчитана на математиков-прикладников, физиков, механиков, инженеров. Предполагается знакомство читателя с аналитической геометрией, линейной алгеброй, дифференциальным и интегральным исчислением).
3. Сизый С.В. Лекции по дифференциальной геометрии. М.: ФИЗМАТЛИТ, 2007. - 376 с. - ISBN 978-5-9221-0742-6 (Настоящее учебное пособие представляет собой переработанный конспект лекций по курсу "Теория чисел" для студентов третьего курса механико-математического факультета Уральского государственного университета. В пособии представлены следующие разделы теории чисел: теория делимости целых чисел, цепные дроби, мультипликативные функции, теория сравнений, трансцендентные числа. Большинство пунктов пособия снабжено задачами для самостоятельного решения. Рекомендовано к изданию Научно-методическим советом по математике и механике УМО университетов России в качестве учебного пособия для математических специальностей и направлений подготовки в университетах).
4. Фиников П.С. Курс дифференциальной геометрии. - М.: КомКнига, 2007. - 344 с. - ISBN 5-484-00355-5 (Вниманию читателя предлагается курс дифференциальной геометрии, написанный известным отечественным математиком С.П.Финиковым. Во введении даются основные определения и рассматриваются простейшие свойства простой дуги кривой и простого куска поверхности. В первой части излагается теория кривых, описываются натуральные уравнения кривой и теория огибающих. Во второй части подробно рассматривается теория поверхностей. Также в книгу включен краткий исторический очерк развития дифференциальной геометрии от Лейбница до наших дней. Рекомендуется математикам, механикам, физикам-теоретикам - студентам, аспирантам, преподавателям и научным работникам).
5. Тайманов И.А. Лекции по дифференциальной геометрии. - М.: Институт компьютерных исследований, Регулярная и хаотическая динамика, 2006. - 256 с. - ISBN 5-93972-467-1 (Изложены основы дифференциальной геометрии кривых и поверхностей, а также несколько дополнительных разделов, посвященных теории групп Ли и элементам теории представления. Книга возникла из курса лекций, прочитанных автором на механико-математическом факультете Новосибирского государственного университета. Несмотря на компактность книги, все вопросы разобраны достаточно доступно, имеются задачи для самостоятельного решения. Может служить учебным пособием для студентов механико-математических и физических специальностей университетов).
6. Шварц Дж. Дифференциальная геометрия и топология. - Новокузнецк: ИО НФМИ, 2003. - 222 с. - ISBN 5-80323-307-2 (Книга представляет собой курс лекций, прочитанных известным американским математиком Дж. Шварцем. Лаконичность и сравнительная простота изложения позволяют читателю быстро ознакомиться с основными понятиями дифференциальной геометрии и топологии. Начиная с общей теории многообразий, выясняя далее связь топологических инвариантов с инвариантами римановой метрики и переходя к К-теории, автор завершает изложение теоремой о векторных полях на сферах. Книга представляет интерес для широких кругов математиков. Ее могут использовать студенты, аспиранты и преподаватели университетов и пединститутов).
7. Торп Дж. Начальные главы дифференциальной геометрии. - М.: Платон, 2000. - 360 с. - ISBN 5-80100-284-7 (Книга американского ученого, знакомящая с основными понятиями и методами дифференциальной геометрии. В ней использован довольно общий алгебраический подход, изложение богато иллюстрировано графическим материалом, имеется около 300 задач).
8. Бюшгенс С.С. Дифференциальная геометрия. - М.: КомКнига, 2006. - 304 с. - ISBN 5-484-00450-0 (Предлагаемая вниманию читателя книга, написанная известным отечественным математиком С.С. Бюшгенсом, представляет собой учебник по дифференциальной геометрии. Автор рассматривает следующие темы: исследование плоской кривой по ее уравнению, соприкосновение плоских кривых и кривизна кривой, пространственные кривые, поверхности, кривизна поверхностей, метод подвижного репера для поверхностей. Книга содержит большое количество упражнений и задач, которые сопровождаются либо полными решениями, либо достаточными указаниями для проведения этих решений. Рекомендуется студентам, аспирантам и преподавателям математических вузов, а также специалистам - математикам и физикам, применяющим в своих исследованиях методы дифференциальной геометрии).
9. Гусейн-Заде С.М. Дифференциальная геометрия. Современные лекционные курсы. М.: МЦНМО, 2004. - 80 с. - SBN 5-900916-93-6 (Настоящий текст представляет собой записи лекций, читавшихся С.М. Гусейн-Заде в Независимом Московском Университете в 1994/95 и в 1995/96 учебных годах для студентов 3 курса (во II семестре) с минимальными изъятиями и дополнениями. Лекции являлись продолжением части курса, читавшейся в первом семестре С.П. Новиковым, и основывались на нем. Текст публикуется в авторской редакции).
10. Блашке В. Введение в дифференциальную геометрию. - У.: Издательство Удмуртского университета, Регулярная и хаотическая динамика, 2005. - 232 с. - ISBN 5-7029-0342-0 (В этой книге излагается в элементарной форме основы теории кривых и поверхностей с помощью метода внешних форм Картана. Идеи этого метода изложены в объеме, достаточном для понимания основного материала. В конце каждой главы приведены задачи и вопросы. В комментариях В.А. Александрова отражено современно состояние обсуждаемых вопросов. Книга рассчитана на студентов и аспирантов, специализирующихся в области математики).
11. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. - М.: Лань, 2003. - 832 с. - ISBN 5-8114-0485-9 ("Справочник" содержит сведения по следующим разделам: высшая алгебра, аналитическая и дифференциальная геометрия, математический анализ (включая интегралы Лебега и Стилтьеса), векторный и тензорный анализ, криволинейные координаты, функции комплексного переменного, операционное исчисление, дифференциальные уравнения обыкновенные и с частными производными, вариационное исчисление, абстрактная алгебра, матрицы, линейные векторные пространства, операторы и теория представлений, интегральные уравнения, краевые задачи, теория вероятностей и математическая статистика, численные методы анализа, специальные функции. Справочник рассчитан на студентов старших курсов математических специальностей, научных работников и инженеров).
12. Мищенко А.С., Фоменко А.Т. Курс дифференциальной геометрии и топологии. - М.: Издательство «Факториал Пресс», 2000. - 448 с. - ISBN: 5-88688-048-8 (Книга представляет собой курс дифференциальной геометрии, читаемый в течение двух семестров на математических факультетах университетов. Она содержит основной программный материал по общей топологии, нелинейным системам координат, теории гладких многообразий, теории кривых и поверхностей, группам преобразований, тензорному анализу и римановой геометрии, теории интегрирования и гомологиям, фундаментальным группам поверхностей, вариационным принципам в римановой геометрии. Изложение иллюстрируется большим количеством примеров и сопровождается задачами, часто содержащими дополнительный материал. Для математиков и физиков - студентов, аспирантов, преподавателей и научных работников).
13. Эйнджел Э. Интерактивная компьютерная графика. - М.: Издательский дом «Вильямс», 2001. - 592 с. - ISBN 5-8459-0209-6 (Книга представляет собой вводный курс компьютерной графики, в котором основной упор сделан на вопросах прикладного программирования. Она включает описание структуры графических систем и обсуждение основных концепции формирования изображений трехмерных объектов и сцен. Рассматривается взаимодействие освещения и материалов, также приводятся основные сведения о методах тонирования освещенных поверхностей, принципах иерархической организации графических моделей и новых возможностях современных аппаратных графических средств. В книгу включены те разделы линейной алгебры и геометрии, которые необходимы для понимания основ компьютерной графики. Обсуждаются методы построения кривых и поверхностей, языковые модели, фракталы и системы частиц, а также методика применения графических средств для визуализации результатов научных расчетов. Весь теоретический материал в книге иллюстрируется программами на OpenGL. Книга адресована в основном студентам старших курсов и аспирантам первого года обучения, специализирующимся в области информатики и вычислительной техники, но будет также полезна и многим профессионалам).
14. Шрайнер Д. OpenGL. Официальный справочник. - СПб: ООО «ДиаСофтЮП», 2002. - 512 с. - ISBN 0-201-65765-1, 5-93772-048-2 (Эта книга является первым русским изданием третьей редакции официального справочника по OpenGL, подготовленным Наблюдательным Советом по Архитектуре OpenGL и компанией SGI. Материал в книге расположен так, что позволяет читателю быстро и эффективно найти в огромной графической библиотеке OpenGL нужную команду или константу, познакомиться с основными идеями и принципами реализации той или иной команды, понять, как работает та или иная команда, а также разобраться с общей архитектурой OpenGL. Книга написана достаточно строго, но понятно, и рассчитана на широкий круг читателей - от новичков до специалистов, уже работающих с OpenGL).
15. М. Ву, Т. Девис, Дж. Нейдер, Д. Шрайнер. OpenGL. Руководство по программированию. - СПб: «Питер», 2006. - 624 с. - ISBN 5-94723-827-6, 0-3211-7348-1 (Это 4-е издание признанного бестселлера, посвященного OpenGL и его библиотеке инструментов. В книге описаны все возможности OpenGL и самые значительные приложения, содержится описание базовых методов компьютерной графики, таких как построение и воспроизведение трехмерных моделей, интерактивный просмотр объектов с различных точек наблюдения, использование тонирования, освещения и эффектов текстурирования. Представлено углубленное описание дополнительных методов компьютерной графики: наложение текстур, сглаживание, "туман" и имитация других атмосферных эффектов, сплайны, конвейерная обработка изображений и другие ключевые темы, такие как повышение производительности программ, расширения OpenGL и создание кросс-платформных приложений).
Размещено на Allbest.ru
Подобные документы
Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.
реферат [5,4 M], добавлен 10.01.2009Способы формообразования и отображения поверхностей. Закон образования поверхности. Основные свойства, вытекающие из закона образования поверхности вращения. Линейчатые поверхности с плоскостью параллелизма. Образование каркаса циклических поверхностей.
реферат [2,0 M], добавлен 19.05.2014Основные свойства векторов. Теории кривых и поверхностей. Натуральная параметризация. Формулы Сере-Френе и Эйлера. Уравнение соприкасающейся окружности. Теорема Менье. Индикатриса Дюпена. Индексные обозначения в дифференциальной геометрии поверхностей.
курсовая работа [1,6 M], добавлен 01.02.2014Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.
курсовая работа [132,8 K], добавлен 28.06.2009Общие сведения о пересечении кривых поверхностей. Способ вспомогательных секущих плоскостей. Пересечение поверхностей с параллельными осями. Применение способа концентрических сфер. Последовательность нахождения горизонтальных проекций заданных точек.
методичка [2,0 M], добавлен 18.02.2015История возникновения и понятия дифференциальной геометрии, в которой плоские и пространственные кривые и поверхности изучаются с помощью дифференциального исчисления и методами математического анализа. Применение темы "Теория поверхностей " в школе.
реферат [608,8 K], добавлен 23.04.2015Виды точек регулярной поверхности. Удельная кривизна выпуклой поверхности. Сфера как единственная овальная поверхность постоянной средней кривизны. Основные понятия и свойства седловых поверхностей. Неограниченность седловых трубок и проблема Плато.
лабораторная работа [1,6 M], добавлен 29.10.2014Характеристика семейства поверхностей. Касательная прямая и плоскость. Криволинейные координаты. Вычисление длины дуги кривой на поверхности и ее площади. Угол между двумя линиями на поверхности. Нормальная кривизна линий, расположенных на поверхности.
дипломная работа [2,0 M], добавлен 18.05.2013Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.
дипломная работа [1,7 M], добавлен 17.05.2010Начертательная геометрия - прикладная наука. Комплексный чертеж плоскости. Взаимные пересечения плоскостей, их перпендикулярность и параллельность с прямыми. Сечение поверхности сферы плоскостями. Пересечение поверхностей, аксонометрические проекции.
методичка [4,2 M], добавлен 03.02.2013