Исследование кривых и поверхностей второго порядка

Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 28.06.2009
Размер файла 132,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Кафедра высшей математики

Курсовая работа

по линейной алгебре и аналитической геометрии

на тему:

Исследование кривых и поверхностей второго порядка

Дубна, 2002

Оглавление

ВВЕДЕНИЕ

ИССЛЕДОВАНИЕ КРИВОЙ ВТОРОГО ПОРЯДКА

Теоретическая часть

Практическая часть

ВЫВОД

ИССЛЕДОВАНИЕ ФОРМЫ ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА

Теоретическая часть

Практическая часть

ВЫВОД

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

Введение

Цель

1. Целью данной курсовой работы является исследование кривой и формы поверхности второго порядка. Закрепление полученных теоретических знаний и практических навыков по изучению и анализу свойств кривых и поверхностей второго порядка.

2. Ознакомление с пакетами программ Microsoft® Word и Microsoft® Excel.

Постановка задачи

I. Для данного уравнения кривой второго порядка:

1. Определить тип данной кривой с помощью инвариантов.

2. Привести уравнение кривой к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей.

3. Найти фокусы, директрисы и ассимптоты данной кривой (если они есть).

4. Построить каноническую систему координат и данную кривую в общей системе координат.

II. Для данного канонического уравнения поверхности второго порядка:

1. Исследовать форму поверхности методом сечений плоскостями, построить линии, полученные в сечениях;

2. Построить поверхность в канонической системе координат.

Исследование кривой второго порядка

Теоретическая часть

Пусть кривая Г задана в декартовой прямоугольной системе координат xOy уравнением:

. (1.1)

Если хотя бы один из коэффициентов отличен от нуля, то кривую Г называют кривой второго порядка.

Теорема 1. Для произвольной кривой второго порядка Г существует такая декартова прямоугольная система координат XOY, что в этой системе кривая Г имеет уравнение одного из следующих канонических видов:

1) , а b > 0 -- эллипс,

2) -- мнимый эллипс,

3) -- две мнимые пересекающиеся прямые

(точка),

4) -- гипербола,

5) -- две пересекающиеся прямые,

6) -- парабола,

7) -- две параллельные прямые,

8) -- две мнимые параллельные прямые,

9) -- две совпадающие прямые.

В этих уравнениях a, b, p -- положительные параметры.

Систему координат XOY назовем канонической системой координат, а систему координат xOy -- общей системой координат.

Классификация кривых второго порядка

В зависимости от значения инварианта принята следующая классификация кривых второго порядка:

· если кривая второго порядка Г называется кривой эллиптического типа.

· если кривая второго порядка Г называется кривой параболического типа.

· если кривая второго порядка Г называется кривой гиперболического типа.

Кривая второго порядка Г называется центральной, если . Кривые эллиптического и гиперболического типа являются центральными кривыми.

Центром кривой второго порядка Г называется такая точка плоскости, по отношению к которой точки этой кривой расположены симметрично парами. Точка является центром кривой второго порядка, определяемой уравнением (1.1), в том и только в том случае, когда ее координаты удовлетворяют уравнениям:

(2.1)

(2.1)

Определитель этой системы равен . Если , то система имеет единственное решение. В этом случае координаты центра могут быть определены по формулам:

, . (2.2)

Из теорем 1 и 2 получается следующая классификация кривых второго порядка с помощью инвариантов:

1) эллипс

2) мнимый эллипс

3) две мнимые пересекающиеся прямые (точка)

4) гипербола

5) две пересекающиеся прямые (2.3)

6) парабола

7) две параллельные прямые

8) две мнимые параллельные прямые

9) две совпадающие прямые

Практическая часть

Дано:

Определить тип кривой с помощью инвариантов в зависимости от в:

Вычислим инварианты:

1. Если , то имеем линии эллиптического типа

Этих в будет эллипс

При

При

2. Если то пишем линии параболического типа, при этом, чтобы была парабола

3. Если , то получаем линии гиперболического типа.

При гипербола

При корней нет, т.е. таких двух пересекающихся прямых, не существует.

Значение

Тип кривой

Мнимая точка

Точка

Эллипс

Парабола

Гипербола

Исследуем кривую при в=0 , тогда получим:
Сперва повернём на угол ц:
Найдём угол ц,такой чтобы коэффициент при был равен 0:
Пусть
Сгруппируем члены уравнения и дополним до полного квадрата:
Произведём перенос системы координат:
координаты нового центра O системы координат
т.е. мы правильно определили каноническое уравнение
Определим фокус эллипс.
Расстояние между найдём по:
В системе координат
Эксцентрический эллипс
Директрисы
Вывод
Исследовав общее уравнение кривой второго порядка и приведя его к каноническому виду, мы установили, что данная кривая -- эллипс. Мы получили каноническое уравнение гиперболы при помощи преобразований параллельного переноса и поворота координатных осей.
Исследование формы поверхности второго порядка

Теоретическая часть

Поверхностью второго порядка S называется геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида:

,

где по крайней мере один из коэффициентов отличен от нуля.

Уравнение (3.1) называют общим уравнением поверхности второго порядка S, а систему координат Oxyz называют общей системой координат.

Теорема: Для произвольной поверхности S, заданной общим уравнением существует такая декартова прямоугольная система координат что в этой системе поверхность S имеет уравнение одного из следующих семнадцати канонических видов.

1) -- эллипсоид,

2) -- мнимый эллипсоид,

3) -- однополостный гиперболоид,

4) -- двуполостный гиперболоид,

5) -- конус,

6) -- мнимый конус (точка),

7) -- эллиптический параболоид,

8) -- гиперболический параболоид,

9) -- эллиптический цилиндр,

10) -- мнимый эллиптический цилиндр,

11) -- две мнимые пересекающиеся плоскости (ось

O'Z),

12) -- гиперболический цилиндр,

13) -- две пересекающиеся плоскости,

14) -- параболический цилиндр,

15) -- две параллельные плоскости,

16) -- две мнимые параллельные плоскости,

17) -- две совпадающие плоскости (плоскость XOZ).

В выше перечисленных уравнениях a, b, c, p --- положительные параметры. Систему координат называют канонической.

Исследование формы поверхности второго порядка методом сечения плоскостями

Если дано каноническое уравнение поверхности S, то представление о поверхности можно получить по форме линий пересечения ее плоскостями:

Z = h -- параллельными координатной плоскости XO'Y,

X = h -- параллельными координатной плоскости YO'Z,

Y = h -- параллельными координатной плоскости XO'Z.

Практическая часть

Дано:

;

Это эллипсоид в прямоугольной декартовой системе координат Oxyz, где оси OX, OY, OZ -- оси симметрии.

1. Рассмотрим линии плоскостями =h (h=const):

(1)

Плоскость Z=h параллельна плоскости Oxy.

Уравнения проекций на Oxy имеют вид:

Если , то , и тогда поделим обе части уравнения на , получим:

Это уравнение эллипсов с полуосями , ; увеличивающиеся с уменьшением , центр эллипса (0;0;h)

При различных h имеем:

Если , тогда и значит линии удовлетворяющих уравнению(1) нет.

2. Рассмотрим полученные в сечениях эллипсоида плоскостями X=h:

(2)

Уравнение проекций на YOZ.

Это уравнение эллипсов с полуосями , ;

Если , то a=3, b=2, и

Если , тогда мы получаем семейство эллипсов:

, ;

, ;

Если , тогда -- это уравнение точки с координатами (h;0;0).

Если , тогда и значит линии удовлетворяющих уравнению (2) нет.

3. Рассмотрим полученные в сечениях эллипсоида плоскостями Y=h:

(3)

Уравнения эллипсов, проекций на YOZ и имеют центры (0;h;0).

Полуоси ,

Если , тогда , уравнение точек с координатами (0;h;0).

Если , тогда мы получаем семейство эллипсов:

, ;

, ;

Если , тогда и значит линии удовлетворяющих уравнению (3) нет.

Построим однополостный гиперболоид

в канонической системе координат проанализировав уравнение поверхности и результаты исследования методом сечения ее плоскостями.

Вывод

Проанализировав уравнение эллипсоида , получили некоторые представления о форме эллипсоида.

Из уравнения следует, что оси OX, OY, OZ -- оси симметрии, плоскости XOY, YOZ, XOZ -- плоскости симметрии.

Рассекая поверхность плоскостями y=h, z=h, x=h, в сечениях имеем эллипсы, наибольшие из которых получаются в плоскостях x=0, y=0, z=0, полуоси их уменьшаются с увеличением , вершины эллипсов имеют координаты по оси X; по оси Y; по оси Z.

Список используемой литературы

1. Копылова Т. В. Конспект лекций по линейной алгебре;

2. Копылова Т. В. Линейная алгебра. -- Дубна: Международный университет природы, общества и человека «Дубна», 1996;

3. Ефимова Л. В., Демидович Б. П. Линейная алгебра и основы математического анализа. -- М: Наука, 1993.


Подобные документы

  • Основные свойства кривых второго порядка. Построение кривой в канонической и общей системах координат. Переход уравнения поверхности второго порядка к каноническому виду. Исследование формы поверхности методом сечений и построение полученных сечений.

    курсовая работа [166,1 K], добавлен 17.05.2011

  • Исследование кривой второго порядка. Определение типа кривой с помощью инвариантов. Приведение к каноническому виду, построение графиков. Исследование поверхности второго порядка. Определение типа поверхности. Анализ формы поверхности методом сечений.

    курсовая работа [231,0 K], добавлен 28.06.2009

  • Доказательство теоремы единственности для кривых второго порядка. Преимущества и недостатки разных способов доказательства теоремы единственности. Пучок кривых второго порядка. Методы решения теоремы единственности для поверхностей второго порядка.

    курсовая работа [302,7 K], добавлен 22.01.2011

  • Исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам. Инвариантность выражения АС-В2. Классификация линий второго порядка. Уравнения, определяющие эллипс и гиперболу. Директрисы кривых второго порядка.

    курсовая работа [132,1 K], добавлен 14.10.2011

  • Уравнение для описания поверхности второго порядка в аффинной системе координат. Виды квадрики в прямоугольной системе координат: мнимый эллипсоид, гиперболоид, конус, параболоид, цилиндр, плоскости. Способы приведения квадрики к каноническому виду.

    курсовая работа [4,5 M], добавлен 19.09.2012

  • Поверхности второго порядка. Исследование поверхности методом параллельных сечений. Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением.

    реферат [361,3 K], добавлен 15.04.2003

  • Метод планирования второго порядка на примере В3-плана. Получение и исследование математической модели объекта в виде полинома второго порядка. Статистический анализ полученного уравнения и построение поверхностей отклика. Расчет коэффициентов регрессии.

    курсовая работа [128,4 K], добавлен 18.11.2010

  • Роль идей и методов проективной геометрии в математической науке. Закономерности кривых второго порядка и кривых второго класса, основные теоремы Паскаля и Брианшона, описывающие замечательное свойство шестиугольника вписанного в кривую второго порядка.

    курсовая работа [1,9 M], добавлен 04.11.2013

  • Использование кривых второго порядка в компьютерных системах. Кривые второго порядка в 3d grapher. Жезл, гиперболическая спираль. Спираль Архимеда, логарифмическая спираль. Улитка Паскаля, четырех и трехлепестковая роза. Эпициклоида и гипоциклоида.

    реферат [221,1 K], добавлен 26.12.2014

  • Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.

    реферат [5,4 M], добавлен 10.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.